1887

Abstract

Summary: Forty-six methionineless mutants of were arranged in three phenotypic groups according to their growth responses to potential precursors of methionine. The results of syntrophism tests led to the recognition of two more phenotypic groups and permitted the arrangement in sequence of the metabolic steps in which mutants of each of the five groups were deficient. Transduction experiments indicated that each of these groups comprised mutants whose sites of mutation were closely linked within a complex locus. Attempts to map the sites of mutation of 12 mutants within one locus were unsuccessful. One of the mutants, probably a deletion, failed to recombine with the other 11 and behaved differently from them in linked transduction. A group of three and one pair of the 11 mutants could not be separated by recombination. Linkage was detected by transduction between only 2 of the 5 loci; these were concerned with non-sequential steps in the biosynthesis of methionine. No linkage was detected between the methionine loci and any of a number of other loci, including those controlling the biosyntheses of cysteine and tryptophan. These results were only partly in accordance with a previously suggested linkage map.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-24-3-335
1961-03-01
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/24/3/mic-24-3-335.html?itemId=/content/journal/micro/10.1099/00221287-24-3-335&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1950; Methods of study of bacterial viruses. Meth. med. Res 2:1
    [Google Scholar]
  2. Barratt R. W., Newmeyer D., Perkins D. D., Garnjobst L. 1954; Map construction in Neurospora crassa . Advan. Genet 6:1
    [Google Scholar]
  3. Clowes R. C. 1958; Investigation of the genetics of cysteineless mutants of Salmonella typhimurium by transduction. J. gen. Microbiol 18:154
    [Google Scholar]
  4. Clowes R. C. 1960; Fine genetic structure as revealed by transduction. Symp. Soc. gen. Microbiol 10:92
    [Google Scholar]
  5. Clowes R. C., Rowley D. 1954; Some observations on linkage effects in genetic recombination in Escherichia coli K-12. J. gen. Microbiol 11:250
    [Google Scholar]
  6. Davis B. D. 1948; Isolation of biochemically deficient mutants of bacteria by penicillin. J. Amer. chem. Soc 70:4267
    [Google Scholar]
  7. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact 60:17
    [Google Scholar]
  8. Demerec M. 1956a; A comparative study of certain gene loci in Salmonella . Cold Spr. Harb. Symp. quant. Biol 21:113
    [Google Scholar]
  9. Demerec M. 1956b; Terminology and nomenclature. Genetic studies with Bacteria. Publ. Carneg. Instn 612:1
    [Google Scholar]
  10. Demerec M., Blomstrand I., Demerec Z. E. 1955; Evidence of complex loci in Salmonella . Proc. nat. Acad. Sci., Wash 41:359
    [Google Scholar]
  11. Demerec M., Demerec Z. E. 1955; Analysis of linkage relationships in Salmonella by transduction techniques. Brookhaven Symp. Biol 8:75
    [Google Scholar]
  12. Demerec M., Goldman I., Lahr E. L. 1958; Genetic recombination by transduction in Salmonella . Cold Spr. Harb.Symp. quant. Biol 23:59
    [Google Scholar]
  13. Demerec M., Hartman P. E., Moser H., Kanazir D., Demerec Z. E., Fitzgerald P. L., Glover S. W., Lahr E. L., Westover W. E., Yura T. 1955; Bacterial Genetics. I. Carneg. Instn Yr Bk 54:219
    [Google Scholar]
  14. Demerec M., Hartman Zlata. 1956; Tryptophan mutants in Salmonella typhimurium. Genetics Studies with bacteria. Publ. Carneg. Instn 612:5
    [Google Scholar]
  15. Demerec M., Lahr E. L., Miyake T., Goldman I., Balbinder E., Banič S., Hashimoto K., Glanville E. V., Gross J. D. 1958; Bacterial genetics. Carneg. Instn, Yr Bk 57:390
    [Google Scholar]
  16. Demerec M., Lahr E. L., Ozeki H., Goldman I., Howarth S., Djordjević B. 1957; Bacterial Genetics. Carneg. Instn Yr Bk 56:368
    [Google Scholar]
  17. Demerec M., Moser H., Clowes R. C., Lahr E. L., Ozeki H., Vielmetter W. 1956; Bacterial Genetics. Carneg. Instn Yr Bk 55:301
    [Google Scholar]
  18. Demerec M., Ozeki H. 1959; Tests for allelism among auxotrophs of Salmonella typhimurium . Genetics 44:279
    [Google Scholar]
  19. Dent C. E. 1948; A study of the behaviour of some sixty amino-acids and other nin-hydrin-reacting substances in phenol-‘collidine’ filter paper chromatograms with notes as to the occurrence of some of them in biological fluids. Biochem. J 43:169
    [Google Scholar]
  20. Dubnoff J. W. 1952; The role of B12 in methionine synthesis in E. coli . Arch. Biochem. Biophys 37:37
    [Google Scholar]
  21. Gibson F., Woods D. D. 1952; The synthesis of methionine from homocysteine by Escherichia coli . Biochem. J 51:v
    [Google Scholar]
  22. Glover S. W. 1955; In Demerec et al. 1955.
    [Google Scholar]
  23. Glover S. W. 1956; Some aspects of the genetics of Escherichia coli and Salmonella typhimurium . Ph.D. thesis University of Dublin:
    [Google Scholar]
  24. Glover S. W. 1958; A genetical and biochemical study of methionine mutants of Salmonella typhimurium . Proc. VIIth int. Con. Microbiol 4: 1 57
    [Google Scholar]
  25. Gots J. S. 1956; The biochemical nature of a suppressor mutation in a purine requiring mutant of Salmonella typhimurium. Genetic Studies with Bacteria. Publ. Carneg. Instn 612:87
    [Google Scholar]
  26. Hartman P. E. 1956; Linked loci in the control of consecutive steps in the primary pathway of histidine synthesis in Salmonella typhimurium. Genetic Studies with Bacteria. Publ. Carneg. Instn 612:35
    [Google Scholar]
  27. Hartman P. E., Loper J. C., Šerman D. 1960; Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. J. gen. Microbiol 22:323
    [Google Scholar]
  28. Helleiner C. W., Woods D. D. 1956; Cobalamin and the synthesis of methionine by cell-free extracts of Escherichia coli . Biochem. J 63:26P
    [Google Scholar]
  29. Hershey A. D., Chase M. 1953; Independent function of viral protein and nucleic acid in the growth of bacteriophage. J. gen. Physiol 36:39
    [Google Scholar]
  30. Hopwood D. A. 1959; Linkage and the mechanism of recombination in Streptomyces coelicolor . Ann. N.Y. Acad. Sci 81:887
    [Google Scholar]
  31. Horowitz N. H. 1947; Methionine synthesis in Neurospora. The isolation of cystathionine. J. biol. Chem 171:255
    [Google Scholar]
  32. Howarth S. 1958; Suppressor mutations in some cysteine requiring mutants of Salmonella typhimurium . Genetics 43:404
    [Google Scholar]
  33. Kizer D. E., Speck M. L., Aurand L. W. 1955; The effect of methionine and methionine precursors on the growth of Streptococcus lactis . J. Bact 69:16
    [Google Scholar]
  34. Lederberg J. 1950; Isolation and characterization of biochemical mutants of bacteria. Meth. med. Res 3:5
    [Google Scholar]
  35. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact 63:399
    [Google Scholar]
  36. Lederberg J., Zinder N. 1948; Concentration of biochemical mutants of bacteria with penicillin. J. Amer. chem. Soc 70:4267
    [Google Scholar]
  37. Ozeki H. 1956; Abortive transduction in purine-requiring mutants of Salmonella typhimurium. Genetic studies with bacteria. Publ. Carneg. Instn 612:97
    [Google Scholar]
  38. Ozeki H. 1959; Chromosome fragments participating in transduction in Salmonella typhimurium . Genetics 44:457
    [Google Scholar]
  39. Pardee A. B., Jacob F., Monod J. 1959; The genetic control and cytoplasmic expression of ‘inducibility’ in the synthesis of β-galactosidase by E. coli . J. mol. Biol 1:165
    [Google Scholar]
  40. Pontecorvo G. 1949; Auxanographic techniques in biochemical genetics. J. gen. Microbiol 3:122
    [Google Scholar]
  41. Pontecorvo G. 1958 Trends in Genetic Analysis New York: Columbia University Press;
    [Google Scholar]
  42. Ruebner B. 1956; The biologic assay of l-methionine using a mutant of Bact. coli, strain K12. J. Lab. clin. Med 47:140
    [Google Scholar]
  43. Shapiro S. K. 1955; The biosynthesis of methionine from homocysteine and methyl-methionine sulphonium salt. Biochim. biophys. Acta 18:134
    [Google Scholar]
  44. Wijesundera S., Woods D. D. 1953; Cystathionine in relation to methionine synthesis by Bacterium coli . J. gen. Microbiol 9:iii
    [Google Scholar]
  45. Yanofsky C., Lennox E. S. 1959; Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in Escherichia coli . Virology 8:425
    [Google Scholar]
  46. Young L., Maw G. A. 1958 The Metabolism of Sulphur Compounds London: Methuen and Co. Ltd;
    [Google Scholar]
  47. Yura T. 1956a; Evidence of non-identical alleles in purine-requiring mutants of Salmonella typhimurium. Genetic studies with bacteria. Publ. Carneg. Instn 612:63
    [Google Scholar]
  48. Yura T. 1956b; Suppressor mutations in purine-requiring mutants of Salmonella typhimurium. Genetic Studies with Bacteria. Publ. Carneg. Instn 612:77
    [Google Scholar]
  49. Zinder N. D., Lederberg J. 1952; Genetic exchange in Salmonella . J. Bact 64:679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-24-3-335
Loading
/content/journal/micro/10.1099/00221287-24-3-335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error