1887

Abstract

SUMMARY: Resting organisms of 3 were able to synthesize protein and nucleic acids in a chemically defined medium. Protein synthesis was markedly inhibited while ribonucleic acid (RNA) synthesis was stimulated by low concentrations of chloramphenicol; deoxyribonucleic acid synthesis was inhibited slightly. Neither glycine, l-phenylalanine nor l-tyrosine annulled the action of the antibiotic. Inhibition of protein synthesis and stimulation of RNA synthesis in resting organisms of a chloramphenicol-resistant mutant of 3 was observed only in the presence of high concentrations of chloramphenicol. The results presented in this paper show that chloramphenicol suppresses the growth of 3 by interfering with the synthesis of protein. The stimulation of RNA synthesis suggests that chloramphenicol may exert its inhibitory action by promoting the formation of RNA with altered biological activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-27-3-521
1962-03-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/27/3/mic-27-3-521.html?itemId=/content/journal/micro/10.1099/00221287-27-3-521&mimeType=html&fmt=ahah

References

  1. Bernlohr R. W., Webster G. C. 1958; Effect of chloramphenicol on protein and nucleic acid metabolism in Azotobacter agilis . J. Bad 76:233
    [Google Scholar]
  2. Bryson V., Szybalski W. 1952; Microbial selection. Science 116:45
    [Google Scholar]
  3. Burton K. 1956; A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J 62:315
    [Google Scholar]
  4. Colowick S. P., Kaplan N. O. 1957 Methods in Enzymology vol. 3 New York: Academic Press Inc;
    [Google Scholar]
  5. Foster J. W., Pittillo R. F. 1953; Metabolite reversal of antibiotic inhibition, especially reversal of aureomycin inhibition by riboflavin. J. Bad 66:478
    [Google Scholar]
  6. Gale E. F., Folkes J. P. 1953; The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus . Biochem. J 53:493
    [Google Scholar]
  7. Gale E. F. 1958; Specific inhibitors of protein synthesis. In The Strategy of Chemotherapy. Symp. Soc. gen. Microbiol 8:212
    [Google Scholar]
  8. Harrington M. G. 1958; The action of chloramphcnicol on protein and nucleic acid synthesis by Escherichia coli strain B. J. gen. Microbiol 18:767
    [Google Scholar]
  9. Hopps H. E., Wisseman C. L. Jr, Hahn F. E., Smadel J. E., Ho R. 1956; Mode of action of chloramphenicol. 4. Failure of selected natural metabolites to reverse antibiotic action. J. Bad 72:561
    [Google Scholar]
  10. Horiuchi T., IIoriuchi S., Mizuno D. 1959; Non-participation in protein synthesis of the RNA synthesized in the presence of chloramphenicol in Escherichia coli . J. med. Sci 12:99
    [Google Scholar]
  11. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. biol. Chem 193:265
    [Google Scholar]
  12. Mentzer C., Meunier P., Molho-LaCroix L. 1950; Faits de synergie et d’antagonisme entre la chloromycetine et divers amino-acids vis-à-vis de cultures d’ E. coli . C.R. Acad. Set., Paris 230:241
    [Google Scholar]
  13. Niedhardt F. C., Gros F. 1957; Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of chloromycetin. Biochim. biophys. Acta 25:513
    [Google Scholar]
  14. Nomura M., Watson J. D. 1959; Ribonucleoprotein particles with chloromycetin inhibited Escherichia coli . J. mol. Biol 1:204
    [Google Scholar]
  15. Pan S. F., Yee R., Gezon H. M. 1957; Studies on the metabolism of Shigella. I. The occurrence of a tricarboxylic acid cycle in Shigella flexneri . J. Bad 73:402
    [Google Scholar]
  16. Pardee A. B., Prestidge L. S. 1956; The dependence of nucleic acid synthesis on the presence of amino acids in Escherichia coli . J. Bad 71:677
    [Google Scholar]
  17. Pardee A. B., Paigen K., Prestidge L. 1957; A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim. biophys. Acta 23:162
    [Google Scholar]
  18. Ramsey H. H. 1958; Protein synthesis as a basis for chloramphenicol-resistance in Staphylococcus aureus . Nature, Lond 182:602
    [Google Scholar]
  19. Umbreit W. W., Burris R. H., Stauffer J. H. 1957 Manometric Techniques Minneapolis: Burgess Publishing Co;
    [Google Scholar]
  20. Wisseman C. L. Jr, Smadel J. E., Hahn F. E., Hopps H. E. 1954; Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli . J. Bact 67:662
    [Google Scholar]
  21. Woolley D. W. 1950; A study of non-competitive antagonism with chloromycetin and related analogues of phenylalanine. J. biol. Chem 185:293
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-27-3-521
Loading
/content/journal/micro/10.1099/00221287-27-3-521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error