1887

Abstract

SUMMARY

γ-Glutamyl transfer activity was found to be widely distributed in different bacterial species. The γ-glutamyl transfer from glutathione to water and acceptors other than water was studied with cell-free preparations of In the absence of added acceptor, the γ-glutamyl residue was predominantly transferred to water; however, some transfer to the substrate, resulting in the formation of γ-glutamylglutathione, was detected. In the presence of acceptors (amino acids or peptides) all the γ-glutamyl residue was transferred to the added acceptor. The different reactionproducts were isolated and identified. Kinetics and properties of the γ-glutamyl transfer reaction were studied.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-41-2-185
1965-11-01
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/41/2/mic-41-2-185.html?itemId=/content/journal/micro/10.1099/00221287-41-2-185&mimeType=html&fmt=ahah

References

  1. Avi Dor Y. 1960; A study on the effect of particle-bound γ-glutamyl transpeptidase on the product of interaction of fluoropyruvate with glutathione. Biochem. J. 76:370
    [Google Scholar]
  2. Ball E. G., Cooper O., Clarke E. C. 1953; On the hydrolysis and transpeptidation of glutathione in marine forms. Biol. Bull. mar. biol. Lab., Woods Hole 105:370
    [Google Scholar]
  3. Ball E. G., Revel J. P., Cooper O. 1956; The quantitative measurement of γ-glutamyl transpeptidase activity. J. biol. Chem. 221:895
    [Google Scholar]
  4. Binkley F. 1961; Purification and properties of renal glutathionase. J. biol. Chem. 236:1075
    [Google Scholar]
  5. Binkley F., Nakamtjra K. 1948; Metabolism of glutathione. I. Hydrolysis by tissue of the rat. J. biol. Chem. 173:411
    [Google Scholar]
  6. Connel G. E., Hanes C. S. 1956; Enzymic formation of pyrrolidone carboxylic acid from γ-glutamyl peptides. Nature, Lond. 177:377
    [Google Scholar]
  7. Ellfolk N., Synge R. L. M. 1955; Detection of pyrrolidone carboxylic acid. Bio-chem. J. 59:523
    [Google Scholar]
  8. Fodor P. J., Miller A., Waelsch H. 1953; Quantitative aspects of enzymatic cleavage of glutathione. J. biol. Chem. 202:551
    [Google Scholar]
  9. Fruton J. S., Johnston R. B., Fried M. 1951; Elongation of peptide chains in enzyme catalyzed transamidation reactions. J. biol. Chem. 190:39
    [Google Scholar]
  10. Hanes C. S., Hird F. J. R., Isherwood F. A. 1950; Synthesis of peptides in enzymic reactions involving glutathione. Nature, Lond. 166:288
    [Google Scholar]
  11. Hanes C. S., Hird F. J. R., Isherwood F. A. 1952; Enzymic transpeptidation reactions involving γ-glutamyl peptides and α-amino-acyl peptides. Biochem. J. 51:25
    [Google Scholar]
  12. Hanson H., Blech W., Hermann P., Kleine R. 1959; Vorkommen und quantitative Erfassbarkeit proteolytischer Enzymaktivitäten in Zellsbestandteilen von Leber und Niere der Ratte. Hoppe-Seyler’s Z. physiol. Chem. 315:181
    [Google Scholar]
  13. Haschen R. J. 1956; Aktivitätsbestimmung von Peptidasen durch quantitative Papierchromatographie. Clinica chim. Acta 1:242
    [Google Scholar]
  14. Hird F. J. R., Springell P. H. 1954a; The enzymic reactions of amino acids with glutathione. Biochem. J. 56:417
    [Google Scholar]
  15. Hird F. J. R., Springell P. H. 1954b; The enzymic hydrolysis of the γ-glutamyl bond in glutathione. Biochim. biophys. Acta 15:31
    [Google Scholar]
  16. Johnston R. B., Mycek M. J., Fruton J. S. 1950; Catalysis of transpeptidation reactions by chymotrypsin. J. biol. Chem. 187:205
    [Google Scholar]
  17. Kawerau E., Wieland T. 1951; Conservation of amino acid chromatograms. Nature, Lond. 168:77
    [Google Scholar]
  18. Kinoshita J. H., Ball E. G. 1953; A transpeptidation reaction between glutathione and arginine. J. biol. Chem. 200:609
    [Google Scholar]
  19. Mehl J. W. 1945; The biuret reaction of proteins in the presence of ethylene glycol. J. biol. Chem. 157:173
    [Google Scholar]
  20. Patterson J. W., Lazarow A. 1955; Determination of glutathione. Meth. biochem. Analysis 2:273
    [Google Scholar]
  21. Reith W. S. 1957; A device for concentrating and eluting the spots from chromatograms. Nature, Lond. 179:580
    [Google Scholar]
  22. Revel J. P., Ball E. G. 1959; The reaction of glutathione with amino acids and related compounds as catalyzed by γ-glutamyl transpeptidase. J. biol. Chem. 234:577
    [Google Scholar]
  23. Rosenthal S. M., Tabor C. W. 1956; The pharmacology of spermine and spermidine distribution and excretion. J. Pharmac. exp. Ther. 116:131
    [Google Scholar]
  24. Rydon H. N., Smith P. W. G. 1952; A new method for the detection of peptides and similar compounds on paper chromatograms. Nature, Lond. 169:922
    [Google Scholar]
  25. Samuels Talalay P. 1954; Glutathione breakdown and transpeptidation reactions in Proteus vulgaris. Nature, Lond. 174:516
    [Google Scholar]
  26. Woodward G. E., Reinhart F. E. 1942; The effect of pH on the formation of pyrrolidone carboxylic acid and glutamic acid during enzymatic hydrolysis of glutathione by rat kidney extract. J. biol. Chem. 145:471
    [Google Scholar]
  27. Woodward G. E., Munro M. P., Schroeder E. F. 1935; Glyoxalase. IV. The antiglyoxalase action of kidney and pancreas preparations. J. biol. Chem. 109:11
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-41-2-185
Loading
/content/journal/micro/10.1099/00221287-41-2-185
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error