1887

Abstract

SUMMARY: This report shows that some auxotrophic mutants of can grow on a minimal medium without growth factors when the gas phase is supplemented with carbon dioxide. Mutants which respond to CO are called CO mutants. The CO mutants of resemble those already known in Neurospora. When the gas phase is not supplemented with CO most of the mutants respond to other specific growth factors such as arginine, uracil, adenine, succinate or isoleucine+valine, depending upon the locus of their mutation. One mutant is an obligate CO mutant. The CO effects shown by these mutants are discussed in relation to the general problem of CO effects in micro-organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-51-2-211
1968-04-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/51/2/mic-51-2-211.html?itemId=/content/journal/micro/10.1099/00221287-51-2-211&mimeType=html&fmt=ahah

References

  1. Ajl S. J., Werkman C. H. 1949; Anaerobic replacement of carbon dioxide. Proc. Soc. exp. Biol. Med. N.Y 70:522
    [Google Scholar]
  2. Back K. J. C., Westaway E. G. 1962; Studies on a mutant strain of Escherichia coli which requires both methionine and lysine for growth. J. gen. Microbiol 27:41
    [Google Scholar]
  3. Bartnicki-Garcia S., Nickerson W. J. 1962; Induction of yeast-like development in Mucor by carbon dioxide. J. Bact 84:829
    [Google Scholar]
  4. Beckwith J. R., Pardee A. B., Austrian R., Jacob F. 1962; Co-ordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J. molec. Biol 5:618
    [Google Scholar]
  5. Broadbent J. A. 1965 Carbon-dioxide Requiring Mutants in Neurospora crassa Ph.D. thesis University of Reading; England:
    [Google Scholar]
  6. Broadbent J. A., Charles H. P. 1965; Some carbon-dioxide requiring mutants of Neurospora crassa. J. gen. Microbiol 34:131
    [Google Scholar]
  7. Charles H. P. 1962; Response of Neurospora mutants to carbon dioxide. Nature, Lond 195:359
    [Google Scholar]
  8. Charles H. P., Broadbent J. A. 1964; Carbon dioxide mutants: a large and interesting class of Neurospora mutants. Nature, Lond 201:1004
    [Google Scholar]
  9. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B 12. J. Bact 60:17
    [Google Scholar]
  10. Davis B. D., Kornberg H. L., Nagler A., Miller P., Mingioli E. 1959; Formation and functions of succinate in Escherichia coli. Fedn Proc. Fedn Am. Socs exp. Biol 18:211
    [Google Scholar]
  11. Gilvarg C. 1957; N-succinyl-L-diaminopimelic acid, an intermediate in the biosynthesis of diaminopimelic acid. Biochim. biophys. Acta 24:216
    [Google Scholar]
  12. Glandsdorff N. 1965; Topography of cotransducible arginine mutations in Escherichia coli k-12. Genetics 51:167
    [Google Scholar]
  13. Goodgal H., Margolin P., Sanderson K. 1964; Laboratory manual for a course. Selected Methods in Bacterial Genetics Cold Spring Harbor Laboratory for Quantitative Biology, Cold Spring Harbor; New York, U.S.A:
    [Google Scholar]
  14. Gorini L., Kalman S. M. 1963; Control by uracil of carbamyl phosphate synthesis in Escherichia coli. Biochim. biophys. Acta 69:355
    [Google Scholar]
  15. Gorini L., Kaufman H. 1959; Selecting bacterial mutants by the penicillin method. Science, N.Y 131:604
    [Google Scholar]
  16. Gots J. S. 1965; Personal communication quoted in Stouthamer et al. (1965).
  17. Hayes W., Jacob F., Wollman E. L. 1956; Conjugation in bacteria. In Methodology in Basic Genetics Ed. by Burdette W. L. p. 129 San Francisco: Holden-Bay Inc;
    [Google Scholar]
  18. Ivanovics G. 1937; Unter welchen Bedingungen werden bei der Nährboden-Zūchtung der Milz-brandbazillen Kapseln gebildet. Zbl. Bakt. (1. Abt. Orig.) 138:449
    [Google Scholar]
  19. Jacob F., Wollman E. L. 1961 Sexuality and the Genetics of Bacteria New York: Academic Press;
    [Google Scholar]
  20. Krebs H. A. 1941; Carbon dioxide assimilation in heterotrophic organisms. Nature, Lond 147:560
    [Google Scholar]
  21. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact 63:399
    [Google Scholar]
  22. Loomis W. F. 1961; Cell differentiation. A problem in selective gene activation through self-produced micro-environmental differences of carbon dioxide tension. In Biological Structure and Function Ed. by Goodwin T. W., Lindberg O. New York: Academic Press;
    [Google Scholar]
  23. Love S. H., Gots J. S. 1955; Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of Escherichia coli. J. biol. Chem 212:647
    [Google Scholar]
  24. Lwoff A., Monod J. 1946; L’anhydride carbonique considéré comme substance indispensable aux micro-organismes. La biosynthese des acides dicarboxyliques. C. r. hebd. Séanc. Acad. Sci., Paris 222:696
    [Google Scholar]
  25. Lwoff A., Monod J. 1947; Essai d’analyse du rôle de l’anhydride carbonique dans la croissance microbienne. Annls Inst. Pasteur, Paris 73:323
    [Google Scholar]
  26. Newmeyer D. 1964; Growth and allelism of arg-11 and adg. Neurospora Newsletter 6:14
    [Google Scholar]
  27. Piérard A. 1966; Control of the activity of Escherichia coli carbamoyl phosphate synthetase by antagonistic allosteric effectors. Science, N.Y 154:1572
    [Google Scholar]
  28. Piérard A., Glansdorff N., Mergeay M., Wiame J. M. 1965; Control of the biosynthesis of carbamoyl phosphate in Escherichia coli. J. molec. Biol 14:23
    [Google Scholar]
  29. Pontecorvo G. J. 1949; Auxanographic techniques in biochemical genetics. J. gen. Microbiol 3:122
    [Google Scholar]
  30. Rahn O. 1941; Protozoa need carbon dioxide for growth. Growth 5:197
    [Google Scholar]
  31. Ramakrishnan T., Adelberg E. A. 1964; Regulatory mechanisms in the biosynthesis of isoleucine and valine. I. Genetic derepression of enzyme formation. J. Bact 87:566
    [Google Scholar]
  32. Ramakrishnan T., Adelberg E. A. 1965a; Regulatory mechanisms in the biosynthesis of isoleucine and valine. II. Identification of two operator genes. J. Bact 89:654
    [Google Scholar]
  33. Ramakrishnan T., Adelberg E. A. 1965b; Regulatory mechanisms in the biosynthesis of isoleucine and valine. III. Map order of the structural genes and operator genes. J. Bact 89:661
    [Google Scholar]
  34. Rockwell G. E., Highberger J. H. 1927; The necessity of carbon dioxide for the growth of bacteria, yeasts and molds. J. inf. Dis 40:438
    [Google Scholar]
  35. Rowbury R. J., Woods D. D. 1964; O-succinyl-homoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. J. gen. Microbiol 36:341
    [Google Scholar]
  36. Reissig J. L., Nazario M. 1962; Regulación genetica de la sintesis de arginia y uridina. Sesiones Cientificas de Biologica Cordoba (Argentina) p. 76
    [Google Scholar]
  37. Stoutamer A. H. 1967; Mutant strains of Aerobacter aerogenes which require both methionine and lysine for aerobic growth. J. gen. Microbiol 46:389
    [Google Scholar]
  38. Stouthamer A. H., de Haan P. G., Nijkamp H. J. J. 1965; Mapping of purine markers in Escherichia coli k 12. Genet. Res 6:442
    [Google Scholar]
  39. Taylor A. L. 1965; Quoted in Yan, Y. & Demeremc, M. Genetic analysis of pyrimidine mutants of Salmonella typhimurium. Genetics 52:643
    [Google Scholar]
  40. Taylor A. L., Thoman M. S. 1964; Genetic map of Escherichia coli k 12. Genetics 50:659
    [Google Scholar]
  41. Taylor A. L., Beckwith J. R., Pardee A. B., Austrian R., Jacob F. 1964; The chromosomal location of the structural gene for orotidylic acid pyrophosphorylase in Escherichia coli. J. molec. Biol 8:771
    [Google Scholar]
  42. Thorne K. J. I., Jones M. E. 1963; Carbamyl and acetyl phosphokinase activities of Streptococcus faecalis and Escherichia coli. J. biol. Chem 238:2992
    [Google Scholar]
  43. Topley and Wilson’s Principles of Bacteriology and Immunity 1964, 5th ed. Ed. by Wilson G. S., Miles A. A. p. 83 London: Edward Arnold Ltd;
  44. Valley G., Rettger L. F. 1927; The influence of carbon dioxide on bacteria. J. Bact 14:101
    [Google Scholar]
  45. Vogel H. J., Bonner D. M. 1956; A convenient growth medium for E. coli and some other organisms. Microb. Genet. Bull 13:43
    [Google Scholar]
  46. Wong D. T. O., Ajl S. J. 1953; Replacement of carbon dioxide by factors obtained from Lebedev juice. Expl. Cell Res 4:42
    [Google Scholar]
  47. Yashphe J., Gorini L. 1965; Phosphorylation of carbamate in vivo and in vitro. J. biol. Chem 240:1681
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-51-2-211
Loading
/content/journal/micro/10.1099/00221287-51-2-211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error