1887

Abstract

SUMMARY:

sp. 8/ isolated from soil and sp. 8858 are capable of growth on -aminopropan-2-ol or aminoacetone as sole sources of carbon, nitrogen and energy. During growth on the amino alcohol, small amounts of aminoacetone initially accumulate in the medium but disappear during the early logarithmic phase. Aminoacetone accumulation is favoured by high pH and high growth-substrate concentrations.

Washed suspensions of the pseudomonads grown on -aminopropan-2-ol accumulate aminoacetone when incubated with the amino alcohol in the presence of metabolic inhibitors, and rapidly utilize aminoacetone in their absence. Aminoacetone formation is optimal at about pH 10 in the presence or absence of the most effective inhibitor iodoacetate.

Aminoacetone utilization occurs optimally at pH 7·7, the apparent for the amino ketone being about 0·1 m. At an initial concn. of 1·0 m, the rate of utilization is proportional to cell density up to at least 0·5 mg. dry wt organisms/ml. and is constant with time over almost the entire course of the reaction. The maximum rate of utilization is approximately 150 mμmoles/mg. dry wt organisms/min. at 30˚. The phenyl analogue 2'-aminoacetophenone is utilized at a comparable rate but 5-aminolaevulate is virtually unaffected. Anaerobic conditions and metabolic inhibitors prevent amino ketone utilization.

Growth conditions markedly affect the ability of suspensions both to accumulate and utilize aminoacetone. Of the growth substrates tested, only -threonine enabled sp. 8/ to utilize aminoacetone, the rate being approx. 60 % of that found after growthon -aminopropan-2-ol

The patterns of oxidation of possible intermediates of -aminopropan-2-ol catabolism are similar using washed organisms grown on either the amino alcohol or aminoacetone. Organisms grown on acetate plus glycine oxidize such compounds at relatively low rates. Methylglyoxal is not a substrate for either growth or oxidation. Comparison of the rates of oxygen uptake and aminoacetone utilization, and measurement of the total oxygen consumed, indicate about 70% complete oxidation of the amino ketone by organisms grown on the amino alcohol.

Similar maximum crop-sizes are obtained in media in which ammonium sulphate or different relative amounts of - and -aminopropan-2-ol serve as the sole sources of growth-limiting nitrogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-54-1-105
1968-11-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/54/1/mic-54-1-105.html?itemId=/content/journal/micro/10.1099/00221287-54-1-105&mimeType=html&fmt=ahah

References

  1. ELLIOTT W. H. A new threonine metabolite.. Biochem biophys. Acta. 1958; 29:446
    [Google Scholar]
  2. ELLIOTT W. H. Aminoacetone. Its isolation and role in metabolism.. Nature, Lond. 1959; 183:151
    [Google Scholar]
  3. ELLIOTT W. H. Aminoacetone formation by Staphylococcus aureus.. Biochem. J. 196; 74:478
    [Google Scholar]
  4. GABRIEL S., COLMAN J. Zur Kenntrias der Amidoacetons.. Ber. dt. chem. Ges. 192; 35:385
    [Google Scholar]
  5. GABRIEL S., PINKUS G. Zur Kenntrias der Amidoketone.. Ber. dt. chem. Ges. 1913; 26:2197
    [Google Scholar]
  6. GREEN M. L., ELLIOTT W. H. The enzymic formation of aminoacetone from threonine and its further metabolism.. Biochem. J. 1964; 92:537
    [Google Scholar]
  7. GREEN M. L., LEWIS J. B. The oxidation of aminoacetone by a species of Arthrobacter.. Biochem. J. 1968; 16:267
    [Google Scholar]
  8. HIGGINS I. J., TURNER J. M. Microbial metabolism of aminoacetone.. Biochem. J. 1966; 99:26
    [Google Scholar]
  9. HIGGINS I. J. , TURNER J. M., WILLETTS A. J. Enzyme mechanism of aminoacetone metabolism by micro-organisms.. Nature Lond. 1967; 215:887
    [Google Scholar]
  10. MAUZERALL D., GRANICK S. The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine. J. biol. Chem. 1956; 219:435
    [Google Scholar]
  11. MCGILVRAY D., MORRIS J. G. The metabolic fate of α-amino-β-oxobutyrate in Arthrobacter sp.. Biochem. J. 1966; 99:12
    [Google Scholar]
  12. MONDER C. Oxidation of methyl glyoxal to pyruvic acid by a sheep-liver enzyme. Biochem. biophys.. Acta 1965; 99:573
    [Google Scholar]
  13. MONDER C. α-Ketoaldehyde dehydrogenase: an enzyme that catalyses the enzymic oxidation of methylglyoxal to pyruvate.. J. biol. Chem. 1967; 242:463
    [Google Scholar]
  14. NEUBERGER A. Aspects of the metabolism of glycine and of porphyrins.. Biochem. J. 1961; 78:1
    [Google Scholar]
  15. NEUBERGER A., SCOTT J. J. Aminolaevulinic acid and porphyrin biosynthesis.. Nature Lond. 1953; 172:193
    [Google Scholar]
  16. NEUBERGER A., TAIT G. H. The enzymicc onversion of threonine to aminoacetone.. Biochem. biophys. Acta 196; 41:164
    [Google Scholar]
  17. NEUBERGER A., TAIT G. H. Production of aminoacetone by Rhodopseudomonas spheroides.. Biochem J. 1962; 84:317
    [Google Scholar]
  18. PICKARD M. A., TURNER J. M. Microbial metabolism of 5-aminolaevulate.. Biochem. J. 1966; 99:25
    [Google Scholar]
  19. PICKARD M. A., HIGGINS I. J., TURNER J. M. Microbial Metabolism of I-Aminopropan-2-I.. J. gen. Microbiol. 1966 i. 45:
    [Google Scholar]
  20. PICKARD M. A., HIGGINS I. J., TURNER J. M. Purification and properties of L-I- aminopropan-2-ol: NAD oxidoreductase from a pseudomonad grown on DL-I-aminopropan-2-ol. J. gen. Microbiol. 1968; 54:115
    [Google Scholar]
  21. SHEMIN D., RUSSELL C. S. δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. . J. Am. chem. Soc. 1953; 75:4873
    [Google Scholar]
  22. SULLIVAN R. H. Resolution of racemic aminoisopropanol.. U.S. Patent, 3, 116, 332 1963; Cl. 26:584
    [Google Scholar]
  23. TURNER J. M. Aminoacetone production by micro-organisms.. Biochem. J. 1966a; 98:7
    [Google Scholar]
  24. TURNER J. M. Microbial metabolism of aminoketones. Aminoacetone formation from I-aminopropan-2-ol by a dehydrogenase in Escherichia coli.. Biochem. J. 1966 b; 99:427
    [Google Scholar]
  25. TURNER J. M. Microbial metabolism of aminoketones. L-I-Aminopropan-2-ol and L-threonine dehydrogenase in Escherichia coli.. Biochem. J. 1967; 14:112
    [Google Scholar]
  26. TURNER J. M., WILLETTS A. J. Aminoketone formation and aminopropanol-dehydrogenase activity in rat-liver preparations.. Biochem. J. 1967; 12:511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-54-1-105
Loading
/content/journal/micro/10.1099/00221287-54-1-105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error