1887

Abstract

SUMMARY

DNA, isolated from bacteria which had been heated to 52° for several minutes, sedimented in an alkaline sucrose gradient more rapidly than DNA from untreated bacteria, in a similar manner to DNA from bacteria exposed to ionizing radiation. There is a general correlation between the sensitivities to -radiation and to incubation at 52° of various strains of Heated bacteria were more sensitive to subsequent exposure to -radiation, indicating that recovery capacity was itself heat-sensitive. The normal function of some of the cellular systems conferring radiation resistance might therefore be the mitigation of DNA damage due to mild thermal stress at elevated and perhaps also at normal temperatures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-58-1-115
1969-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/58/1/mic-58-1-115.html?itemId=/content/journal/micro/10.1099/00221287-58-1-115&mimeType=html&fmt=ahah

References

  1. Adler H. I. 1966; The genetic control of radiation sensitivity in micro-organisms. In Advances in Radiation Biology Augenstein L. G., Mason K., Zelle M. R. 2 New York: Academic Press;
    [Google Scholar]
  2. Alper T. 1961; Variability in the oxygen effect observed with micro-organisms. Part II Escherichia coli b . Int. J. Radiat. Biol 3:369
    [Google Scholar]
  3. Alper T., Gillies N. E. 1958; ‘Restoration’ of Escherichia coli strain b after irradiation: its dependence on suboptimal growth conditions. J. gen. Microbiol 18:461
    [Google Scholar]
  4. Alper T., Gillies N. E. 1960; The relationship between growth and survival of Escherichia coli strain b and two resistant mutants. J. gen. Microbiol 22:113
    [Google Scholar]
  5. Bridges B. A., Munson R. J. 1968; Genetic radiation damage and its repair in Escherichia coli . In Current Topics in Radiation Research Ebert M., Howard A. 4 Amsterdam: North Holland;
    [Google Scholar]
  6. Cook J. S., McGrath J. R. 1967; Photoreactivating-enzyme activity in metazoa. Proc. natn. Acad. SciU.S.A 581359
    [Google Scholar]
  7. Eigner J., Boedtker H., Michaels G. 1961; The thermal degradation of nucleic acids. Biochim. biophys. Acta 51:165
    [Google Scholar]
  8. Freeman B. M., Bridges B. A. 1960; Suitability of various plating media for counting bacteria after exposure to gamma radiation. Int. J. appl. Radiat. Isotopes 8:136
    [Google Scholar]
  9. Freifelder D. 1965; Mechanisms of inactivation of coliphage T7 by X-rays. Proc. natn. Acad. SciU.S.A 54128
    [Google Scholar]
  10. Greer S., Zamenhof S. 1962; Studies on depurination of DNA by heat. J. molec. Biol 4:123
    [Google Scholar]
  11. Haas F. L., Doudney C. O. 1957; A relation of nucleic acid synthesis to radiation-induced mutation frequency in bacteria. Proc. natn. Acad. SciU.S.A. 43871
    [Google Scholar]
  12. Hagen U., Wellstein H. 1965; Untersuchungen über die Strahlenempfindlichkeit der Desoxyribonukleinsäure. III. Brüche und Vernetzungen nach direkter Bestrahlung. Strahlentherapie 128:565
    [Google Scholar]
  13. Harm W., Stein W. 1952; Vergleich der UV-Inaktivierung und Wärmeaktivierung von ver-schiedenen UV-empfindlichen Coli-Kulturen. Natürwissenschaften 39:212
    [Google Scholar]
  14. Haynes R. H. 1964; Role of DNA repair mechanisms in microbial inactivation and recovery phenomena. Photochem. Photobiol 3:429
    [Google Scholar]
  15. Howard-Flanders P. 1968; DNA repair. A. Rev. Biochem 37:175
    [Google Scholar]
  16. Howard-Flanders P., Theriot L. 1966; Mutants of Escherichia coli k-12 defective in DNA repair and in genetic recombination. Genetics, Princeton 53:1137
    [Google Scholar]
  17. Kantor G. J., Deering R. A. 1968; Effect of nalidixic acid and hydroxyurea on division ability of Escherichia coli fil + lon strains. J. Bact 95:520
    [Google Scholar]
  18. McGrath R. A., Williams R. W. 1966; Reconstruction in vivo of irradiated Escherichia coli deoxyribonycleic acid; the rejoining of broken pieces. Nature, Lond 212:534
    [Google Scholar]
  19. Moseley B. E. B. 1968; The repair of damaged DNA in irradiated bacteria. In Advances in Microbial Physiology Rose A. H., Wilkinson J. F. 2 London: Academic Press;
    [Google Scholar]
  20. Moseley B. E. B., Laser H. 1965; Similarity of repair of ionizing and ultraviolet radiation damage in Micrococcus radiodurans . Nature, Lond 206:373
    [Google Scholar]
  21. Patrick M. H., Haynes R. H. 1964; Dark recovery phenomena in yeast. II. Conditions that modify the recovery process. Radiat. Res 23:564
    [Google Scholar]
  22. Strauss B. A. 1968; DNA repair mechanisms and their relation to mutation and recombination. Current Topics in Microbiology and Immunology 44:1
    [Google Scholar]
  23. Witkin E. M. 1966; In discussion. Radiat. Res. Suppl 6:26
    [Google Scholar]
  24. Witkin E. M. 1967; Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli b differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol 2017
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-58-1-115
Loading
/content/journal/micro/10.1099/00221287-58-1-115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error