1887

Abstract

Summary: Strains designated as were found to constitute two distinct groups on the basis of wall sugar patterns, nucleotide-sequence similarities of DNA preparations and nutritional requirements. Organisms in homology group I had walls which contained only glucose and would grow in a mineral salts-glucose medium with 0·05 μg./ml. biotin, although growth was improved by the addition of amino acids. Some strains labelled and belonged to this group. Organisms in homology group II had glucose and galactose as wall sugars and would not grow in mineral salts-glucose medium with amino acids and 10 vitamins unless yeast extract was also added. Strains of and some strains labelled belonged to group II.

It is recommended that the name be retained for the organisms in group I, while is suggested for group II. Some of the strains labelled and the strains of and did not belong to either group.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-67-1-33
1971-07-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/67/1/mic-67-1-33.html?itemId=/content/journal/micro/10.1099/00221287-67-1-33&mimeType=html&fmt=ahah

References

  1. Beerens H., Castel M. M., Put H. M. C. 1962; Charactères d’identification de quelques Clostridium du groupe Butyricum . Annales de l’Institut Pasteur, Paris 103:117–121
    [Google Scholar]
  2. Bhat J. V., Barker H. A. 1947; Clostridium lacto-acetophilum nov.spec and the role of acetic acid in the butyric acid fermention of lactate. Journal of Bacteriology 54:381–391
    [Google Scholar]
  3. Breed R. S., Murray E. G. D., Smith N. R. 1957 Bergey’s Manual of Determinative Bacteriology, 7th edn. Baltimore: Williams & Wilkins Co;
    [Google Scholar]
  4. Bryant M. P., Burkey L. A. 1956; The characteristics of lactate-fermenting spore-forming anaerobes from silage. Journal of Bacteriology 71:43–46
    [Google Scholar]
  5. Cato E. P., Cummins C. S., Holdeman L. V., Johnson J. L., Moore W. E. C., Smibert R. M., Smith L. Ds. 1970 Outline of Clinical Methods in Anaerobic Bacteriology. Anaerobe Laboratory, Virginia Polytechnic Institute and State University; Blacksburg, Virginia:
    [Google Scholar]
  6. Cummins C. S. 1970; Cell wall composition in the classification of Gram-positive anaerobes. International Journal of Systematic Bacteriology 20:413–419
    [Google Scholar]
  7. Donker H. J. L. 1926 Bijdrage tot de Kennis der Boterzuur-, Butylalcoholen Acetongistingen pp. 1–155 Inaug. dissertation, Delft.
    [Google Scholar]
  8. Glendenning O. M. 1958 Some Studies on the Cell Walls of Micro-organisms with Special Emphasis on Biochemical Composition. M.Sc. thesis, University of London;
    [Google Scholar]
  9. Haythornthwaite S. U. 1968 Chemical and Immunological Studies on the Cell Wall and Capsular Antigens of Clostridium welchii. Ph.D. thesis, University of London;
    [Google Scholar]
  10. Hellinger E. 1947; Clostridium aurantibutyricum (n.sp.): a pink butyric acid Clostridium. Journal of General Microbiology 1:203–210
    [Google Scholar]
  11. Hoare D. S., Work E. 1957; The stereoisomers of α, ɛ-Diaminopimelic acid. II. Their distribution in the bacterial order Actinomycetales and in certain Eubacteriales.. Biochemical Journal 65:441–447
    [Google Scholar]
  12. Hungerer K. D., Tipper D. J. 1969; Cell wall polymers of Bacillus sphaericus 9602. I. Structure of the vegetative cell wall peptidoglycan. Biochemistry 8:3577–3578
    [Google Scholar]
  13. Johnson J. L. 1970; Relationship of deoxyribonucleic acid homologies to cell wall structure. International Journal of Systematic Bacteriology 20:421–424
    [Google Scholar]
  14. Johnson J. L., Ordal E. J. 1968; Deoxyribonucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. Journal of Bacteriology 95:893–900
    [Google Scholar]
  15. Johnson J. L., Anderson R. S., Ordal E. J. 1970; Nucleic acid homologies among oxidase-negative Moraxella species. Journal of Bacteriology 101:568–573
    [Google Scholar]
  16. Lampen J. O., Peterson W. H. 1943; Growth factor requirements of Clostridia. Archives of Biochemistry 2:443–449
    [Google Scholar]
  17. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  19. McCoy E., Fred E. B., Peterson W. H., Hastings E. G. 1926; A cultural study of the acetone butyl alcohol organism. Journal of Infectious Diseases 39:457–483
    [Google Scholar]
  20. McCoy E., Fred E. B., Peterson W. H., Hastings E. G. 1930; A cultural study of certain anaerobic butyric acid-forming bacteria. Journal of Infectious Diseases 46:118–137
    [Google Scholar]
  21. Moore W. E. C., Cato E. P. 1965; Synonymy of Eubacterium limosum and Butyribacterium rettgeri: Butyribacterium limosum comb.nov.. International Bulletin of Bacteriological Nomenclature and Taxonomy 15:69–80
    [Google Scholar]
  22. Moore W. E. C., Cato E. P., Holdeman L. V. 1966; Fermentation patterns of some Clostridium species. International Journal of Systematic Bacteriology 16:383–415
    [Google Scholar]
  23. Ng H., Vaughn R. H. 1963; Clostridium rubrum sp.n. and other pectinolytic clostridia from soil.. Journal of Bacteriology 85:1104–1113
    [Google Scholar]
  24. Pittman K. A., Bryant M. P. 1964; Peptides and other nitrogen sources for growth of Bacteroides ruminicola . Journal of Bacteriology 88:401–410
    [Google Scholar]
  25. Powell J. F., Strange R. E. 1957; α, ɛ-Diaminopimelic acid metabolism and sporulation in Bacillus sphaericus . Biochemical Journal 65:700–708
    [Google Scholar]
  26. Prazmowski A. 1880 Untersuchungen über die Entwickelungsgeschichte und Fermentwirkung einiger Bacterien-Arten. Leipzig: Hugo Voigt;
    [Google Scholar]
  27. Prévot A. R., Loth R. 1941; Recherches biochimiques sur Clostridium fallax (W. et S.) et Clostridium pseudo-fallax nov.spec.. Annales de l’Institut Pasteur, Paris 67:244–247
    [Google Scholar]
  28. Prévot A. R., Saissac R. 1950; Étude d’une nouvelle espèce anaërobie tellurique amylolytique, Clostridium amylolyticum n.sp.. Annales de l’Institut Pasteur, Paris 79:328–331
    [Google Scholar]
  29. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of isomers of α,e-diaminopimelic acid on paper chromotagraphy. Journal of the American Chemical Society 77:4844–4846
    [Google Scholar]
  30. Richard O. (1948); Variation in morphological and biochemical characteristics of anaerobic butyric acid bacteria. Nature, London 162:463–465
    [Google Scholar]
  31. Salton M. R. J., Ghuysenn J. M. 1957; Action de l’actinomycetine sur les parois cellulaires bactériennes. Biochimica et biophysica acta 24:160–173
    [Google Scholar]
  32. Snell E. E., Williams R. J. 1939; Biotin as a growth factor for the butyl alcohol-producing anaerobes. Journal of the American Chemical Society 61:3594
    [Google Scholar]
  33. Trevelyan W. E., Harrison J. S. 1952; Studies on yeast metabolism. I. Fractionation and microdetermination of cell carbohydrates.. Biochemical Journal 50:299–303
    [Google Scholar]
  34. Weinberg M., Séguin P. 1915; Flore microbienne de la gangrene gazeuse. Le B. fallax.. Compte rendu des séances de la Société de biologie, Paris 79:116–121 (quoted by Prévot & Loth, 1941)
    [Google Scholar]
  35. Wiken T., Richard O. 1952; Biotin and p-Aminobensoesäure als Wuchsstoffe für frisch isolierte Clostridium-Formen. Physiologia Plantarum 5:510–527
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-67-1-33
Loading
/content/journal/micro/10.1099/00221287-67-1-33
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error