1887

Abstract

SUMMARY: The properties of cells and mitochondria isolated from , a hydrocarbon-utilizing yeast, grown on ethanol, glucose and -alkanes were examined. A comparative study was made of the properties of the whole cells and mitochondria of and of those of .

The reduced-minus-oxidized cytochrome spectrum of grown on ethanol showed a much larger amount of cytochromes and a very broad cytochrome -type absorption band compared with . The relative amounts of cytochromes in on hydrocarbons differed according to the growth phase but never reached the levels obsered in the cells grown on ethanol. Furthermore, as judged by the reduced-minus-oxidized cytochrome spectra, was much less affected by glucose repression than was . The fatty acids of mitochondria isolated from ethanol-grown consisted mainly of equal amounts of oleic (C) and linoleic (C) unsaturated fatty acids, each making up about 40% of the total. In contrast, mitochondria contained palmitoleic (C) (approx. 45%) and oleic (approx. 35%) as the main fatty-acid components. There was an increase in the amount of oleic acid (60%) relative to linoleic acid (20%) when was grown on even-numbered hydrocarbons and a progressive increase in the amount of heptadecenoic acid (C) up to 75% when grown on odd-numbered -alkanes of increasing carbon-chain length from C to C. The changes in fatty-acid composition were correlated with changes in membrane fluidity as measured by differences in transition temperatures in Arrhenius plots of mitochordrial membrane-bound enzymes.

The ATPases of and mitochondria were examined, and marked differences in specific activity (3- to 5-fold higher in ), pH profile and oligomycin sensitivity were noted.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-84-1-94
1974-09-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/84/1/mic-84-1-94.html?itemId=/content/journal/micro/10.1099/00221287-84-1-94&mimeType=html&fmt=ahah

References

  1. Ainsworth P. J., Tustanoff E. R., Ball A. J. S. 1972; Membrane phase transitions as a diagnostic tool for studying mitochondriogenesis. Biochemical and Biophysical Research Communications 47:1299–1305
    [Google Scholar]
  2. Engelman D. M. 1971; Lipid bilayer structure in the membrane of Mycoplasma laidlawii . Journal of Molecular Biology 58:153–165
    [Google Scholar]
  3. Esfahani M., Limbrick A. R., Knutton S., Oka T., Wakil S. J. 1971; The molecular organization of lipids in the membrane of Escherichia coli: phase transitions. Proceedings of the National Academy of Sciences of the United States of America 68:3180–3184
    [Google Scholar]
  4. Fleischer S., Brierley G., Klouwen H., Slautterback D. B. 1962; Studies on the electron transfer system. XLVII. The role of phospholipids in electron transfer. Journal of Biological Chemistry 237:3264–3272
    [Google Scholar]
  5. Gallo M., Bertrand J. C., Roche B., Azoulay E. 1973b; Cinetique de degradation des hydrocarbons par Candida tropicalis . Biochimica et biophysica acta 296:624–638
    [Google Scholar]
  6. Gallo M., Roche B., Aubert L., Azoulay E. 1973a; Distribution des enzymes et des cytochromes de Candida tropicalis . Biochimie 55:195–203
    [Google Scholar]
  7. van Gelder B. F. 1966; The extinction coefficient of cytochrome a and cytochrome a 3 . Biochimica et biophysica acta 118:36–46
    [Google Scholar]
  8. Goma G., Pareilleux A., Durand G. 1973; Kinetics of hydrocarbon assimilation by Candida lipolytica . Archiv fur Mikrobiologie 88:97–109
    [Google Scholar]
  9. Green D. E., Tzagoloff A. 1966; The role of lipids in the structure and function of biological membranes. Journal of Lipid Research 7:587–602
    [Google Scholar]
  10. Houghton R. L., Skipton M. D., Watson K., Griffiths D. E. 1973; Comparative studies on the mitochondria of Saccharomyces cerevisiae and a hydrocarbon utilising yeast, Candida lipolytica. II. Mitochondrial ATPase. Transactions of the Biochemical Society 1:1110–1113
    [Google Scholar]
  11. Hug H., Fiechter A. 1973; Assimilation of aliphatic hydrocarbons by Candida tropicalis . Archiv für Mikrobiologie 88:87–96
    [Google Scholar]
  12. Jayaraman J., Cotman C., Mahler H. R., Sharp C. W. 1966; Biochemical correlates of respiratory deficiency. VII. Glucose repression. Archives of Biochemistry and Biophysics 116:224–251
    [Google Scholar]
  13. Kagawa Y., Racker E. 1966; Partial resolution of the enzymes catalysing oxidative phosphorylation. IX. Reconstitution of oligomycin-sensitive adenosine triphosphatase. Journal of Biological Chemistry 241:2467–2474
    [Google Scholar]
  14. King T. E., Howard R. L. 1967; Preparation and properties of soluble NADH dehydrogenase from cardiac muscle. Methods in Enzymology 10:275–294
    [Google Scholar]
  15. Klug M. J., Markovetz A. J. 1970; Utilization of aliphatic hydrocarbons by microorganisms. Advances in Microbial Physiology 5:1–43
    [Google Scholar]
  16. Kovac L., Bednarova H., Greksak M. 1968; Oxidative phosphorylation in yeast. I. Isolation and properties of phosphorylating mitochondria from stationary phase cells. Biochimica et biophysica acta 153:32–42
    [Google Scholar]
  17. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein estimation with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  18. Ludvik J., Munk V., Dostalek M. 1968; Ultrastructural changes in the yeast Candida lipolytica by penetration of hydrocarbon into the cell. Experientia 24:1066–1068
    [Google Scholar]
  19. Mackler B., Haynes B. 1973; Studies on oxidative phosphorylation in Saccharomyces cerevisiae and Saccharomyces carlsbergensis . Biochimica et biophysica acta 292:88–91
    [Google Scholar]
  20. McAuliffe C. 1969; Solubility in water of normal C9 and C10 alkane hydrocarbons. Science, New York 163:478–479
    [Google Scholar]
  21. McElhaney R. N., De Gier J., van der Neut-Kok E. C. M. 1973; The effects of alterations in fatty acid composition and cholosterol content on the nonelectrolyte permeability of Acholeplasma laidlawii b cells and derived liposomes. Biochimica et biophysica acta 298:500–512
    [Google Scholar]
  22. Moo-Young M., Shimizu T., Whitworth D. T. 1971; Hydrocarbon fermentations using Candida lipolytica. I. Basic growth parameters for batch and continuous culture conditions. Biotechnology and Bioengineering 13:741–760
    [Google Scholar]
  23. Ohnishi T., Heldt H., Kroger A., Pfaff E., Klingenberg M. 1967; The response of the respiratory chain and adenine nucleotide system to oxidative phosphorylation in yeast mitochondria. European Journal of Biochemistry 1:301–311
    [Google Scholar]
  24. Overath P., Schairer H. U., Stoffel W. 1970; The correlation in vivo and in vitro phase transitions of the membrane lipids in Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 67:606–612
    [Google Scholar]
  25. Pitotti A., Contessa A. R., Dabenni-Sala F., Bruni A. 1972; Activation by phospholipids of particulate mitochondrial ATPase from rat-liver. Biochimica et biophysica acta 274:528–535
    [Google Scholar]
  26. Pullman M. E., Monroy G. C. 1963; A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. Journal of Biological Chemistry 238:3762–3769
    [Google Scholar]
  27. Skipton M. D., Watson K., Houghton R. L., Griffiths D. E. 1973; Comparative studies on the mitochondria of Saccharomyces cerevisiae and a hydrocarbon utilising yeast, Candida lipolytica. I. Unsaturated fatty acid and cytochrome composition. Transactions of the Biochemical Society 1:1107–1109
    [Google Scholar]
  28. Slonimski P. 1953 La formation des enzymes respiratoires chez la levure Actualités biochemiques No. 17 Paris: Maisson et Cie;
    [Google Scholar]
  29. Stahl W. 1973; Role of phospholipids in the Na+–K+-stimulated adenosine triphosphatase system of brain microsomes. Archives of Biochemistry and Biophysics 154:56–67
    [Google Scholar]
  30. Steim J. M., Tourtellotte M. E., Reinert J. C., McElhaney R. N., Rader R. L. 1969; Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proceedings of the National Academy of Sciences of the United States of America 63:104–109
    [Google Scholar]
  31. Swanljung P., Frigeri L., Ohlson K., Ernster L. 1973; Studies on the activation of purified ATPase by phospholipids. Biochimica et biophysica acta 305:519–533
    [Google Scholar]
  32. Taniguchi K., Iida S. 1972; The effect of phospholipids on the apparent activation energy of (Na+–K+) ATPase. Biochimica et biophysica acta 274:536–541
    [Google Scholar]
  33. Watson K., Bertoli E., Griffiths D. E. 1973a; Phase transitions in yeast mitochondrial membranes. The transition temperatures of succinate dehydrogenase and F1-ATPase in mitochondria from aerobic and anaerobic cells. FEBS Letters 30:120–124
    [Google Scholar]
  34. Watson K., Bertoli E., Griffiths D. E. 1973b; Phase transitions in yeast mitochondrial membranes. In Abstracts gth International Congress of Biochemistry, Stockholm p. 272
    [Google Scholar]
  35. Watson K., Haslam J. M., Linnane A. W. 1970; Biogenesis of mitochondria. XIII. The isolation of mitochondrial structures from anaerobically grown Saccharomyces cerevisiae . Journal of Cell Biology 46:88–96
    [Google Scholar]
  36. Wickerham L. J. 1946; A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. Journal of Bacteriology 52:293–301
    [Google Scholar]
  37. Wilkinson J. F. 1971 In Microbes and Biological Productivity pp. 15–46 Edited by Hughes D. E., Rose A. H. Cambridge: Cambridge University Press;
    [Google Scholar]
  38. Wilson D., Epel D. 1968; The cytochrome system of sea urchin sperm. Archives of Biochemistry and Biophysics 126:83–90
    [Google Scholar]
  39. Wilson G., Rose A., Fox G. F. 1970; The effect of membrane lipid unsaturation on glycoside transport. Biochemical and Biophysical Research Communications 38:617–623
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-84-1-94
Loading
/content/journal/micro/10.1099/00221287-84-1-94
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error