1887

Abstract

Summary: stipes contain glycogen and protein inclusions. The amount of glycogen decreases during stipe elongation: it is at a maximum in stage III and falls to a minimum by stage V. Protein inclusions develop in stage II, reach their greatest size in stage III, and are degraded during stipe elongation in stages IV and V. The morphology of the glycogen differs in the two strains studied. Glycogen and insoluble protein are not evenly distributed throughout the stipe: glycogen is concentrated at the base while insoluble protein is concentrated at the top. During elongation the breakdown of both of these is greatest at the top of the stipe.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-98-2-467
1977-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/98/2/mic-98-2-467.html?itemId=/content/journal/micro/10.1099/00221287-98-2-467&mimeType=html&fmt=ahah

References

  1. Borriss H. 1934; Beiträge zur Wachstums-und Entwicklungs-physiologie der Fruchtkörper von Coprims lagopus. Planta 22:28–69
    [Google Scholar]
  2. Buller A. H. R. 1924 Researches on Fungi III London:: Longmans, Green and Co.; (Reprinted by Hafner, 1958.)
    [Google Scholar]
  3. Cox R.J., Niederpruem D. J. 1975; Differentiation in Coprinus lagopus. III. Expansion of excised fruit bodies. Archives of Microbiology 105:257–260
    [Google Scholar]
  4. Dygert S., Li L. H., Florida D., Thoma J. A. 1965; Determination of reducing substances with improved precision. Analytical Biochemistry 13:367–374
    [Google Scholar]
  5. Eilers F. I. 1974; Growth regulation in Coprinus radiatus. Archives of Microbiology 96:353–364
    [Google Scholar]
  6. Eurenius L., Jarskär R. 1970; A simple method to demonstrate lipids in epon-embedded ultrathin sections. Stain Technology 45:129–132
    [Google Scholar]
  7. Fairbairn N. J. 1953; A modified anthrone reagent. Chemistry and Industry 72:86
    [Google Scholar]
  8. Gooday G. W. 1972a; The role of chitin synthetase in the elongation of fruit bodies of Coprinus cinereus. Journal of General Microbiology 73:xxi
    [Google Scholar]
  9. Gooday G. W. 1972b; The effect of polyoxin D on morphogenesis in Coprinus cinereus. Biochemical Journal 129:17–18P
    [Google Scholar]
  10. Gooday G. W. 1974; Control of development of excised fruit bodies and stipes of Coprinus cinereus. Transactions of the British Mycological Society 62:391–399
    [Google Scholar]
  11. Gooday G. W., de Rousset-Hall A. 1975; Properties of chitin synthetase from Coprinus cinereus. Journal of General Microbiology 89:137–145
    [Google Scholar]
  12. Gruen H. E. 1963; Endogenous growth regulation in carpophores of Agaricus bisporus. Plant Physiology 38:652–666
    [Google Scholar]
  13. Gruen H. E. 1967; Growth regulation in fruit bodies of Agaricus bisporus. Mushroom Science 6:103–120
    [Google Scholar]
  14. Gruen H. E. 1969; Growth and rotation of Flammulina velutipes fruit-bodies and the dependence of stipe elongation on the cap. Mycologia 61:149–166
    [Google Scholar]
  15. Krisman C. R. 1962; A method for the colorimetric estimation of glycogen with iodine. Analytical Biochemistry 14:17–23
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  17. Madelin M. F. 1960; Visible changes in the vegetative mycelium of Coprinus lagopus Fr. at the time of fruiting. Transactions of the British Mycological Society 43:105–110
    [Google Scholar]
  18. Marchant R. 1975; An ultrastructural study of ‘phialospore’ formation in Fusarium culmorum grown in continuous culture. Canadian Journal of Botany 53:1978–1987
    [Google Scholar]
  19. Marchant R., Raudaskoski M., Shneyour Y. 1976; Ultrastructure of an indigotin-producing dome mutant of Schizophyllum commune. Journal of General Microbiology 96:333–339
    [Google Scholar]
  20. Matthews T. R., Niederpruem D. J. 1973; Differentiation in Coprinus lagopus.% II. Histology and ultrastructural aspects of developing primordia. Archiv für Mikrobiologie 88:169–180
    [Google Scholar]
  21. McLaughlin D. J. 1972; Golgi apparatus in the postmeiotic basidium of Coprinus lagopus. Journal of Bacteriology 110:739–742
    [Google Scholar]
  22. McLaughlin D. J. 1974; Ultrastructural localization of carbohydrate in the hymenium and subhymenium of Coprinus. Evidence for the function of the Golgi apparatus. Protoplasma 82:341–364
    [Google Scholar]
  23. Monneron A., Bernhard W. 1966; Action de certaines enzymes sur des tissues inclus en epon. Journal de Microscopie 5:697–714
    [Google Scholar]
  24. deRousset-Hall A., Gooday G. W. 1975; A kinetic study of a solubilized chitin synthetase preparation from Coprinus cinereus. Journal of General Microbiology 89:146–154
    [Google Scholar]
  25. Thiéry J-P. 1967; Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. Journal de Microscopie 6:987–1018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-98-2-467
Loading
/content/journal/micro/10.1099/00221287-98-2-467
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error