1887

Abstract

Summary: The 90 kDa glucosaminidase protein was purified to apparent homogeneity from vegetative cells of AC327, and then the corresponding gene was cloned into in two inactive forms by standard procedures. Nucleotide sequencing of the glucosaminidase region revealed a monocistronic operon, (designated ) encoding a 95.6 kDa protein, comprising 880 amino acid residues, which has a typical signal peptide. Moreover, another monocistronic operon (designated ), encoding a 35.4 kDa protein, was found upstream of the glucosaminidase gene. Expression of a fusion gene, driven by regulatory sequences, was observed during the exponential growth phase. The introduction of a null mutation greatly reduced (by about 95%) the expression of the fusion. Amino acid sequence analysis of the glucosaminidase showed two types of direct repeats, each type being present twice, in the N-terminal-to-central region of the glucosaminidase: these repeats probably represent the cell-wall-binding domain. Zymographic analysis revealed that the 90 kDa glucosaminidase is partly processed to several smaller proteins (35-39 kDa), retaining lytic activity. Processing of these proteins occurred between the N-terminal cell-wall-binding and C-terminal catalytic domains of the glucosaminidase, the site being located between the 569th and 606th codons of the glucosaminidase. Serial deletions from the N-terminus of the glucosaminidase revealed that the loss of more than one repeating unit drastically reduces its lytic activity toward cell walls. The gene product, in either an intact or a truncated form, was found to be lethal for , and the N-terminally truncated glucosaminidase proteins, produced in , were very unstable. The partially purified glucosaminidase from was found to be very unstable at low ionic strength at 37 °C, but this instability was overcome by the addition of either SDS-purified cell wall or protease inhibitor (PMSF) to the enzyme or after purification of the glucosaminidase to apparent homogeneity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-10-2391
1995-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/10/mic-141-10-2391.html?itemId=/content/journal/micro/10.1099/13500872-141-10-2391&mimeType=html&fmt=ahah

References

  1. Akamatsu T., Sekiguchi J. 1987a; Genetic mapping by means of protoplast fusion in Bacillus subtilis. . Mol & Gen Genet 208:254–262
    [Google Scholar]
  2. Akamatsu T., Sekiguchi J. 1987b; Genetic mapping and properties of filamentous mutations in Bacillus subtilis. . Agric Biol Chem 51:2901–2909
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. . J Bacteriol 81:741–746
    [Google Scholar]
  4. Arnosti D.N., Chamberlin M.J. 1989; Secondary σ factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. . Proc Natl Acad Sci USA 86830–834
    [Google Scholar]
  5. Ayusawa D., Yoneda Y., Yamane K., Maruo B. 1975; Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant.. J Bacteriol 124:459–469
    [Google Scholar]
  6. Barilla D., Caramori T., Galizzi A. 1994; Coupling of flagellin gene transcription to flagellar assembly in Bacillus subtilis. . J Bacteriol 176:4558–4564
    [Google Scholar]
  7. Brown W.C. 1973; Rapid methods for extracting autolysins from Bacillus subtilis. . Appl Microbiol 35:295–300
    [Google Scholar]
  8. Brown W.C. 1977; Autolysins in Bacillus subtilis. . In Microbiology-1977 pp.75–84 Edited by Schlessinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Brown W.C., Young F.E. 1970; Dynamic interactions between cell wall polymers, extracellular proteases and autolytic enzymes.. Biochem Biophys Res Commun 38:564–568
    [Google Scholar]
  10. Collins L.V., Hackett J. 1991; Sequence of the phosphomannose isomerase-encoding gene of Salmonella typhimurium. . Gene 103:135–136
    [Google Scholar]
  11. Corfe B.M., Sammons R.L., Smith D.A., Mauël C. 1994; The gerB region of the Bacillus subtilis 168 chromosome encodes a homologue of the gerA spore germination operon.. Microbiology 140:471–478
    [Google Scholar]
  12. Doyle R.i., Koch A.L. 1987; The functions of autolysins in the growth and division of Bacillus subtilis. . Crit Rep Microbiol 15:169–222
    [Google Scholar]
  13. Errington J., Vogt C.H. 1990; Isolation and characterization of mutations in the gene encoding an endogenous Bacillus subtilis β- galactosidase and its regulator.. J Bacteriol 172:488–490
    [Google Scholar]
  14. Fan D.P., Beckman M.M. 1972; New centrifugation technique for isolating enzymes from large cell wall structures: isolation and characterization of two Bacillus subtilis autolysins.. J Bacteriol 109:1258–1265
    [Google Scholar]
  15. Fan D.P., Beckman M.M. 1973; Micrococcus lysodeikticus bacterial walls as a substrate specific for autolytic glycosidase of Bacillus subtilis. . J Bacteriol 114:804–813
    [Google Scholar]
  16. Fein J.E. 1979; Possible involvement of bacterial autolysin enzymes in flagella morphogenesis.. J Bacteriol 137:933–946
    [Google Scholar]
  17. Fein J.E., Rogers H.J. 1976; Autolytic enzyme deficient mutants of Bacillus subtilis 168.. J Bacteriol 127:1427–1442
    [Google Scholar]
  18. Foster S.J. 1991; Cloning, expression, sequence analysis and biochemical characterization of autolytic amidase of Bacillus subtilis 168 trpC2. . J Gen Microbiol 137:1987–1998
    [Google Scholar]
  19. Foster S.J. 1992; Molecular analysis of three major wall- associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein.. Mol Microbiol 8:299–310
    [Google Scholar]
  20. Foster S.J., Johnstone K. 1988; Germination-specific cortex- lytic enzyme is activated during triggering of Bacillus megaterium KM spore germination.. Mol Microbiol 2:727–733
    [Google Scholar]
  21. Hase S., Matsushima Y. 1977; The structure of the branching point between acidic polysaccharide and peptidoglycan in Micrococcus luteus cell wall.. J Biochem 81:1181–1186
    [Google Scholar]
  22. Hauser P.M., Crabb W.D., Fiora M.G., Scoffone F., Galizzi A. 1991; Genetic analysis of the flaA locus of Bacillus subtilis. . J Bacteriol 173:3580–3583
    [Google Scholar]
  23. Helmann J.D. 1991; Alternative sigma factors and the regulation of flagella gene expression.. Mol Microbiol 5:2875–2882
    [Google Scholar]
  24. Helmann J.D., Màrquez L.M., Chamberlin M.J. 1988; Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene.. J Bacteriol 170:1568–1574
    [Google Scholar]
  25. Herbold D.R., Glaser L. 1975; Bacillus subtilis N-acetylmuramic acid l-alanine amidase.. J Biol Chem 250:1676–1682
    [Google Scholar]
  26. Holtje J.-V., Tuomanen E.I. 1991; The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. . J Gen Microbiol 137:441–454
    [Google Scholar]
  27. Kariyama R., Shockman G.D. 1992; Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Entercoccus hirae. . J Bacteriol 174:3226–3241
    [Google Scholar]
  28. Karl H.S., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications.. Bacterial Rev 36:407–477
    [Google Scholar]
  29. Kuroda A., Sekiguchi J. 1990; Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene.. J Gen Microbiol 136:2209–2216
    [Google Scholar]
  30. Kuroda A., Sekiguchi J. 1991; Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene.. J Bacteriol 173:7304–7312
    [Google Scholar]
  31. Kuroda A., Sekiguchi J. 1992; Characterization of the Bacillus subtilis CwbA protein which stimulates cell wall lytic amidases.. FEMS Microbiol Lett 95:109–114
    [Google Scholar]
  32. Kuroda A., Sekiguchi J. 1993; High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin(flaD) mutation.. J Bacteriol 175:795–801
    [Google Scholar]
  33. Kuroda A., Imazeki M., Sekiguchi i. 1991; Purification and characterization of a cell wall hydrolase encoded by the cwlA gene of Bacillus subtilis. . FEMS Microbiol Lett 81:9–14
    [Google Scholar]
  34. Kuroda A., Rashid M.H., Sekiguchi J. 1992a; Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and spoIID product.. J Gen Microbiol 138:1067–1076
    [Google Scholar]
  35. Kuroda A., Sugimoto Y., Funahashi T., Sekiguchi J. 1992b; Genetic structure, isolation and characterization of a Bacillus licheniformis cell wall hydrolase.. Mol & Gen Genet 234:129–137
    [Google Scholar]
  36. Kuroda A., Asami Y., Sekiguchi J. 1993; Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. . J Bacteriol 175:6260–6268
    [Google Scholar]
  37. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:680–685
    [Google Scholar]
  38. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N- acetylmuramoyl-l-alanine amidase and its modifier.. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  39. Leclerc D., Asselin A. 1989; Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis.. Can J Microbiol 35:749–753
    [Google Scholar]
  40. Longchamp P.F., Mauël C., Karamata D. 1994; Lytic enzymes associated with defective prophages of Bacillus subtilis-. sequencing and characterization of the region comprising the N-acetylmuramoyl-l-alanine amidase gene of prophage PBSX.. Microbiology 140:1855–1867
    [Google Scholar]
  41. Margolis P.S., Driks A., Losick R. 1993; Sporulation gene spoIIB from Bacillus subtilis. . J Bacteriol 175:528–540
    [Google Scholar]
  42. Margot P., Karamata D. 1992; Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation.. Mol & Gen Genet 232:359–366
    [Google Scholar]
  43. Margot P., Mauël C., Karamata D. 1994; The gene of the N- acetylglucosaminidase, a Bacillus subtilis cell wall hydrolase not involved in vegetative cell autolysis.. Mol Microbiol 12:535–545
    [Google Scholar]
  44. Marquez L.M., Helmann J.D., Ferrari E., Parker H.M., Ordal G.W., Chamberlin M.J. 1990; Studies of σD-dependent functions in Bacillus subtilis. . J Bacteriol 172:3435–3443
    [Google Scholar]
  45. Mauel C., Young M., Karamata D. 1991; Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis 168, are organized in two divergent transcription units.. J Gen Microbiol 137:929–941
    [Google Scholar]
  46. Miles J.S., Guest J.R. 1984; Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. . Gene 32:41–48
    [Google Scholar]
  47. Miller J.H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Mirel D.B., Chamberlin M.J. 1989; The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase.. J Bacteriol 171:3095–3101
    [Google Scholar]
  49. Mirel D.B., Lauer P., Chamberlin M.J. 1994; Identification of flagellar synthesis regulatory and structural genes in a σD-dependent operon of Bacillus subtilis. . J Bacteriol 176:4492–4500
    [Google Scholar]
  50. Nagarajan V. 1993; Protein secretion.. In Bacillus subtilis and Other Gram-Positive Bacteria pp. 713–726 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  51. Nasir-ud-Din, Lhermitte M., Lamblin G., Jeanloz R.W. 1985; The phosphate diester linkage of the peptidoglycan polysaccharide moieties of Micrococcus lysodeikticus cell wall.. J Biol Chem 260:9981–9987
    [Google Scholar]
  52. Oda Y., Nakayama R., Kuroda A., Sekiguchi J. 1993; Molecular cloning, sequence analysis, and characterization of a new cell wall hydrolase, CwlL, of Bacillus licheniformis. . Mol & Gen Genet 241:380–388
    [Google Scholar]
  53. Oshida T., Sugai M., Komatsuzawa H., Hong Y.-M., Suginaka H., Tomasz A. 1995; A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-β-N- acetylglucosaminidase domain: cloning, sequence analysis, and characterization.. Proc Natl Acad Sci USA 92285–289
    [Google Scholar]
  54. Pooley H.M., Karamata D. 1984; Genetic analysis of autolysin- deficient and flagellaless mutants of Bacillus subtilis. . J Bacteriol 160:1123–1129
    [Google Scholar]
  55. Potvin C., Leclerc D., Tremblay G., Asselin A., Bellemare G. 1988; Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. . Mol & Gen Genet 214:241–248
    [Google Scholar]
  56. Rashid M.H. 1993 Purification and cloning of the autolytic glucos- aminidase from Bacillus subtilis MSc thesis Shinshu University; Japan:
    [Google Scholar]
  57. Rashid M.H., Kuroda A., Sekiguchi J. 1993; Bacillus subtilis mutant deficient in the major autolytic amidase and glucosaminidase is impaired in motility.. FEMS Microbiol Lett 112:135–140
    [Google Scholar]
  58. Robbins P.W., Trimble R.B., Wirth D.F., Hering C., Maley F., Maley G.F., Das R., Gibson B.W., Royal N., Biemann K. 1984; Primary structure of the Streptomyces enzyme endo-β-N- acetylglucosaminidase H.. J Biol Chem 259:7577–7583
    [Google Scholar]
  59. Rogers H.J., Perkins H.R., Ward i.B. 1980 Microbial Cell Walls and Membranes London: Chapman & Hall;
    [Google Scholar]
  60. Rogers H.J., Taylor C., Rayter S., Ward J.B. 1984; Purification and properties of autolytic endo-N-β-acetylglucosaminidase and the N-acetylmuramyl-l-alanine amidase from Bacillus subtilis strain 168.. J Gen Microbiol 130:2395–2402
    [Google Scholar]
  61. Rosario M.M.L, Ordal G.W., Helmann J.D. 1994; Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs.. J Bacteriol 176:2736–2739
    [Google Scholar]
  62. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  63. Sanz J.M., Diaz E., Garcia J.L. 1992; Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolases.. Mol Microbiol 6:921–931
    [Google Scholar]
  64. Schaeffer P., Millet 1., Aubert J.P. 1965; Catabolite repression of bacterial sporulation.. Proc Nail Acad Sci USA 54704–711
    [Google Scholar]
  65. Schreier H.J., Sonenshein A.L. 1986; Altered regulation of the gin A gene in glutamine synthetase mutants of Bacillus subtilis. . J Bacterial 167:35–43
    [Google Scholar]
  66. Sekiguchi J., Ezaki B., Kodama K., Akamatsu T. 1988; Molecular cloning of a gene affecting the autolysin level and flagellation in Bacillus subtilis. . J Gen Microbiol 134:1611–1621
    [Google Scholar]
  67. Shimotsu H., Henner D.J. 1986; Modulation in Bacillus subtilis levansucrase gene expression by sucrose, and regulation of the steady-state mRNA level by sacU and sacQ genes.. J Bacteriol 168:380–388
    [Google Scholar]
  68. Shockman G.D., Höltje J.-V. 1994; Microbial peptidoglycan (murein) hydrolases.. In Bacterial Cell Wall pp. 131–166 Edited by Ghuysen J.-M., Hakenbeck R. Amsterdam: Elsevier Science Publishers;
    [Google Scholar]
  69. Svarachorn A., Shinmyo A., Tsuchido T., Takano M. 1989; Autolysis of Bacillus subtilis induced by monovalent cations.. Appl Microbiol Biotechnol 30:299–304
    [Google Scholar]
  70. Takegawa K., Mikami B., Iwahara S., Morita Y., Yamamoto K., Tochikura T. 1991; Complete amino acid sequence of endo-β- N-acetylglucosaminidase from Flavobacterium sp.. Fur J Biochem 202:175–180
    [Google Scholar]
  71. Thompson J.S., Shockman G.D. 1968; A modification of the Park and Johnson reducing sugar determination suitable for the assaying of insoluble materials: its application to bacterial cell walls.. Anal Biochem 22:260–268
    [Google Scholar]
  72. Tokunaga T., Rashid M.H., Kuroda A., Sekiguchi J. 1994; Effect of degS-degU mutations on the expression of sigD, encoding an alternative sigma factor, and autolysin operon of Bacillus subtilis. . J Bacteriol 176:5177–5180
    [Google Scholar]
  73. Wang X., Mani N., Patte P.A., Wilkinson B.J., Jayaswal R.K. 1992; Analysis of a peptidoglycan hydrolase gene from Staphylococcus aureus NCTC 8325.. J Bacteriol 174:6303–6306
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-10-2391
Loading
/content/journal/micro/10.1099/13500872-141-10-2391
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error