1887

Abstract

Summary: Strain GS101 of makes the carbapenem antibiotic, 1-carbapen-2-em-3-carboxylic acid. Mutants defective in antibiotic production can be assigned to two groups, group 1 and group 2. Group 2 mutants are defective in the carI gene encoding a protein responsible for synthesis of the Lux autoinducer -(3-oxohexanoyl)-L-homoserine lactone (OHHL), which is required to induce carbapenem synthesis in strain GS101. In this paper we describe the molecular genetic analysis of the group 1 mutants which we presumed were defective in the carbapenem biosynthesis () genes. We isolated a cosmid (cWU142) that complemented the group 1 mutants of strain GS101. A small (103 kb) subclone of cWU142 complemented most of the group 1 mutants, and the sequence revealed that the relevant gene () encodes a homologue of the LuxR protein. A disproportionately high frequency of mutants arose in strain GS101 and this was due to acting as a ‘hot spot’ target for secondary transposition of a Tn5 element in this strain. The CarR protein joins a rapidly growing list of homologues, found in taxonomically unrelated bacteria, which act as positive transcriptional activators of genes encoding diverse metabolic functions, including bioluminescence, exoenzyme virulence factor synthesis, cell division, plasmid conjugation, rhizosphere-specific gene induction, surfactant synthesis and antibiotic production. Most of these LuxR-type regulators have been shown to depend, for their function, on -acyl homoserine lactones, which act as chemical signals enabling co-ordination of gene expression with cell density.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-3-541
1995-03-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/3/mic-141-3-541.html?itemId=/content/journal/micro/10.1099/13500872-141-3-541&mimeType=html&fmt=ahah

References

  1. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992; N-(3-oxohexa- noyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. . Biochem J 288:997–1004
    [Google Scholar]
  2. Bycroft B. W. 1988; Dictionary of Antibiotics and Related Substances. . London: Chapman & Hall.:
    [Google Scholar]
  3. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. 1987; The isolation and characterisation of (3R,5R)-carbapenem- 3-carboxylic and (3S,5R)-carbapenem-3-carboxylic acid from Serra- tia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun 21:1623–1625
    [Google Scholar]
  4. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenem-3-carboxylic acid and (5R)- carbapenem-em-3-carboxylic acid by Serratia sp. J Antibiotics 41:1231–1242
    [Google Scholar]
  5. Cao J. G., Meighen E. A. 1989; Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. . J Biol Chem 264:21670–21676
    [Google Scholar]
  6. Chen T. S, Arison B. H., Ruby C. L., Dombrowski A. W., Inamine E. S. 1993; A cofactor for thienamycin biosynthesis produced by a blocked mutant of Streptomyces cattleya. . J Ind Microbiol 12:66–67
    [Google Scholar]
  7. Cubo M. T., Economou A. N., Murphy G. J., Johnston A. W, Downie J. A. 1992 Molecular characterisation and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174:4026–4035
    [Google Scholar]
  8. Devine J. H., Shadel G. S., Baldwin T. O. 1989; Identification of the operator of the lux regulon from the Vibrio fischeri ATCC- 7744. Proc Natl Acad Sci USA 86:5688–5692
    [Google Scholar]
  9. Eberhard A., Burlingame A. L., Eberhard C., Kenyon G. L, Nealson K. H., Oppenheimer N. J. 1981; Structural identification of autoinducer of Photobacterium fischeri luciferase. Bio-chemistry 20:2444–2449
    [Google Scholar]
  10. Ellard F. M., Cabello A., Salmond G. P. C. 1989; Bacteriophage lambda-mediated transposon mutagenesis of phytopathogenic and epiphytic Erwinia species is strain dependent. Mol & Gen Genet 218:491–498
    [Google Scholar]
  11. Engebrecht J., Silverman M. 1984; Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158
    [Google Scholar]
  12. Fournier P., De Ruffray P., Otten L. 1994; Natural instability of an Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3 kb DNA fragment. Mol Plant-Microbe Interact 7:164–172
    [Google Scholar]
  13. Fuqua W. C, Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria – the luxR–luxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275
    [Google Scholar]
  14. Gambello M. J., Iglewski B. H. 1991; Cloning and characterisation of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009
    [Google Scholar]
  15. Gray K. M., Greenberg E. P. 1992; Sequencing and analysis of luxR and luxl, the luminescence regulatory genes from the squid light organ symbiont Vibrio fischeri ES1 14. Mol Marine Biol Biotechnol 1:414–419
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  17. Hinton J. C D., Salmond G. P. C. 1987; Use of TnphoA to enrich for extracellular enzyme mutants of Erwinia carotovora subspecies carotovora. . Mol Microbiol 1:381–386
    [Google Scholar]
  18. Jones S., Yu B., Bainton N. J., Birdsall M., Bycroft B. W., Chhabra S. R., Cox A. J. R, Golby P., Reeves P. J., Stephens S., Winson M. K., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1993; The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudo-monas aeruginosa. . EMBO J 12:2477–2482
    [Google Scholar]
  19. Kitano K., Nozaki Y., Imada A. 1985; Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of Streptomjces griseus subsp. cryophilus C-19393. Agric Biol Chem 49:677–684
    [Google Scholar]
  20. Livermore D. M. 1993; Carbapenemases: the next generation of β-lactamases ?. ASM News 59:129–135
    [Google Scholar]
  21. Meighen E. A. 1991; Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142
    [Google Scholar]
  22. Meighen E. A., Dunlap P. V. 1993; Physiological, biochemical and genetic-control of bacterial bioluminescence. Adv Microb Physiol 34:1–67
    [Google Scholar]
  23. Miller J. H. 1972; Experiments in Molecular Genetics. Cold Spring Harbor,; NY: Cold Spring Harbor Laboratory.:
    [Google Scholar]
  24. Mulholland V., Salmond G. P. C. 1995; Use of coliphage λ and other bacteriophages for molecular genetic analysis of Erwinia and related Gram-negative bacteria. In Methods in Molecular Genetics . Molecular Microbiology Techniques Adolph K, Orlando FL. Academic Press (in press).;
    [Google Scholar]
  25. Naas T., Nordmann P. 1994; Analysis of a carbapenem- hydrolysing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci USA 91:7693–7697
    [Google Scholar]
  26. Ochsner U., Koch A., Fiechter A., Reiser J. 1994; Isolation and characterisation of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. . J Bacteriol 176:2044–2054
    [Google Scholar]
  27. Parker W. L., Rathnum M. L., Wells J. S., Trejo W. H., Principe P. A., Sykes R. B. 1982; SQ27850, a simple carbapenem produced by species of Serratia and Erwinia. . J Antibiotics 35:653–660
    [Google Scholar]
  28. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130
    [Google Scholar]
  29. Pierson L. S. III, Keppenne V. D., Wood D. W. 1994; Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974
    [Google Scholar]
  30. Piper K. R., Beck von Bodman S., Farrand S. K. 1993; Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450
    [Google Scholar]
  31. Pirhonen M., Flego D., Heikinheimo R., Palva E. T. 1993; A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. . EMBO J 12:2467–2476
    [Google Scholar]
  32. Reeves P. J., Whitcombe D., Wharam S., Gibson M., Allison G., Bunce N., Barallon R., Douglas P., Mulholland V., Stevens S., Walker D., Salmond G. P. C. 1993; Molecular cloning and characterization of 13 out genes from Erwinia carotovora subspecies carotovora: genes encoding members of a general secretion pathway (GSP) widespread in Gram-negative bacteria. Mol Microbiol 8:443–456
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  34. Selvaraj G., Fong Y. C., Iyer V. N. 1984; A portable DNA sequence carrying the cohesive site (cos) of bacteriophage lambda and the mob (mobilization) region of the broad-host range plasmid RK2: a module for the construction of new cosmids. Gene 32:235–241
    [Google Scholar]
  35. Sharma S., Stark T. F., Beattie W. G., Moses R. E. 1986; Multiple control elements for the uvrC gene of Escherichia coli. . Nucleic Acids Res 14:2301–2318
    [Google Scholar]
  36. Slock J., Vanriet D., Kolibachuk D., Greenberg E. P. 1990; Critical regions of the Vibrio fischeri LuxR protein defined by mutational analysis. J Bacteriol 172:3974–3979
    [Google Scholar]
  37. Starr M. P., Chatterjee A. K. 1972; The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol 26:389–426
    [Google Scholar]
  38. Swift S., Winson M. K., Chan P. F, Bainton N. J., Birdsall M., Reeves P. J., Rees C. E. D., Chhabra S. R., Hill P. J., Throup J. P., Bycroft B. W., Salmond G. P. C., Williams P., Stewart G. S. A. B. 1993; A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a luxR: luxl superfamily in enteric bacteria. Mol Microbiol 10:511–520
    [Google Scholar]
  39. Swift S., Bainton N. J., Winson M. K. 1994; Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language?. Trends Microbiol 2:193–198
    [Google Scholar]
  40. Tabor S., Richardson C. C. 1985; A bacteriophage-T7 RNA polymerase promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078
    [Google Scholar]
  41. Tadayyon M., Broome-Smith J. K. 1992; TnblaM: a transposon for directly tagging bacterial genes encoding cell envelope and secreted proteins. Gene III21–26
    [Google Scholar]
  42. White F. F., Klee H. J., Nester E. W. 1983; In vivo packaging of cosmids in transposon-mediated mutagenesis. J Bacteriol 153:1075–1078
    [Google Scholar]
  43. Williams P., Bainton N. J., Swift S., Winson M. K., Chhabra S. R., Stewart G. S. A. B., Salmond G. P. C., Bycroft B. W. 1992; Small molecule mediated density dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Lett 100:161–168
    [Google Scholar]
  44. Williamson J. M., Inamine E., Wison K. E., Douglas A. W., Liesch J. M., Albers-Schonberg G. 1985; Biosynthesis of the β-lactam antibiotic, thienamycin, by Streptomyces cattleya . J Biol Chem 260:4637–4647
    [Google Scholar]
  45. Zhang L, Murphy P. J, Kerr A., Tate M. E. 1993; Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362:446–448
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-3-541
Loading
/content/journal/micro/10.1099/13500872-141-3-541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error