1887

Abstract

Summary: We explored different methods of introducing DNA into ‘Streptomyces toyocaensis’ and Streptomyces virginiae to construct stable recombinant strains. Plasmid pIJ702 isolated from transformed protoplasts of at a frequency of 7×10 transformants (μgDNA)-1. pIJ702 prepared from transformed protoplasts at a frequency of 1.5×10 (μgDNA)-1. suggesting that expresses restriction and modification. Plasmid pRHB126 was transduced by bacteriophage FP43 into at a frequency of 1.2×10 (p.f.u.). Plasmids pOJ436 and pRHB304 were introduced into by conjugation from S17-1 at frequencies of about 2×10 and 1×10 per recipient, respectively. Analysis of several exconjugants indicated that pOJ436 and pRHB304 inserted into a unique øC31 site and that some of the insertions had minimal deleterious effects on glycopeptide A47934 production. The results indicate that is a suitable host for gene cloning, whereas does not appear to be.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-2-261
1996-02-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/2/mic-142-2-261.html?itemId=/content/journal/micro/10.1099/13500872-142-2-261&mimeType=html&fmt=ahah

References

  1. Asturias J. A., Martin J. R., Liras P. 1994; Biosynthesis and phosphate control of candicidin by Streptomyces acrimycini JI2236: effect of amplification of the pabAB gene. J Ind Microbiol 13:183–189
    [Google Scholar]
  2. Baltz R. H. 1978; Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol 107:93–102
    [Google Scholar]
  3. Baltz R. H. 1980; Genetic recombination by protoplast fusion in Streptomyces. Dev Ind Microbiol 21:43–54
    [Google Scholar]
  4. Baltz R. H. 1994; Gene expression in recombinant Streptomyces. Recombinant Microorganisms: Gene Expression309–381 Edited by Smith A. New York: Marcel Dekker;
    [Google Scholar]
  5. Baltz R. H., Matsushima P. 1981; Protoplast fusion in Streptomyces: conditions for efficient genetic recombination and cell regeneration. J Gen Microbiol 127:137–146
    [Google Scholar]
  6. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  7. Boeck L. D., Mertz F. P. 1986; A47934, a novel glycopeptide-aglycone antibiotic produced by a strain of Streptomyces toyocaensis: taxonomy and fermentation studies. J Antibiot 39:1533–1540
    [Google Scholar]
  8. Boeck L. D., Mertz F. P., Clem G. M. 1985; A41030, a complex of novel glycopeptide antibiotics produced by a strain of Streptomyces virginiae: taxonomy and fermentation studies. J Antibiot 38:1–8
    [Google Scholar]
  9. Cox K. L., Baltz R. H. 1984; Restriction of bacteriophage plaque formation in Streptomyces spp. J Bacteriol 159:499–504
    [Google Scholar]
  10. Cox K. L., Seno E. T. 1990; Maintenance of cloned tylosin biosynthetic genes in Streptomyces fradiae on freely replicating and integrative plasmid vectors. J Cell Biochem Suppl 14A:93
    [Google Scholar]
  11. Decker H., Summers R. G., Hutchinson C. R. 1994; Overproduction of the acyl carrier protein component of a type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. J Antibiot 47:54–63
    [Google Scholar]
  12. Fayerman J. T., Jones M. D., Richardson M. A. 1985; Development of systems for heterologous gene expression in Streptomyces spp. Microbiology-1985414–420 Edited by Leive L., Bonventre P. F., Morello J. A., Schlesinger S., Silver S. D., Wu H. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Hahn D. R., McHenney M. A., Baltz R. H. 1990; Characterization of FP22, a large streptomycete bacteriophage with DNA insensitive to cleavage by many restriction endonucleases. J Gen Microbiol 136:2395–2404
    [Google Scholar]
  14. Hahn D. R., McHenney M. A., Baltz R. H. 1991; Properties of the streptomycete temperate bacteriophage FP43. J Bacteriol 173:3770–3775
    [Google Scholar]
  15. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith CP., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  16. Illing G. T., Normansell I. D., Peberdy J. F. 1989; Protoplast isolation and regeneration in Streptomyces clavuligerus. J Gen Microbiol 135:2289–2297
    [Google Scholar]
  17. Katz E., Thompson C. J., Hopwood D. A. 1983; Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 129:2703–2714
    [Google Scholar]
  18. Kuhstoss S., Richardson M. A., Rao R. N. 1991; Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97:143–146
    [Google Scholar]
  19. Lancini C., Cavalleri B. 1990; Glycopeptide antibiotics of the vancomycin group. Biochemistry of Peptide Antibiotics159–178 Edited by Kleinkauf H., von Dohren H. New York: Walter de Gruyter;
    [Google Scholar]
  20. Larson J. L., Hershberger C. L. 1984; Shuttle vectors for cloning recombinant DNA in Escherichia coli and Streptomyces griseofuscus C581. J Bacteriol 157:314–317
    [Google Scholar]
  21. Lomovskaya N. D., Emeljanova L. K., Alikhanian S. I. 1971; The genetic location of prophage on the chromosome of Streptomyces coelicolor. Genetics 68:341–347
    [Google Scholar]
  22. Matsushima P., Baltz R. H. 1985; Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J Bacteriol 163:180–185
    [Google Scholar]
  23. Matsushima P., Baltz R. H. 1988; Genetic transformation of Micromonospora rosaria by the Streptomyces plasmid pi J702. J Antibiot 41:583–585
    [Google Scholar]
  24. Matsushima P., Baltz R. H. 1989; Streptomyces lipmanii expresses two restriction systems that inhibit plasmid transformation and bacteriophage plaque formation. J Bacteriol 171:3128–3132
    [Google Scholar]
  25. Matsushima P., Baltz R. H. 1994; Transformation of Saccharo-polyspora spinosa protoplasts with plasmid DNA modified in vitro to avoid host restriction. Microbiology 140:139–143
    [Google Scholar]
  26. Matsushima P., Cox K. L., Baltz R. H. 1987a; Highly transformable mutants of Streptomyces fradiae defective in several restriction systems. Mol & Gen Genet 206:393–400
    [Google Scholar]
  27. Matsushima P., McHenney M. A., Baltz R. H. 1987b; Efficient transformation of Amycolatopsis orientalis (Nocardia orientalis) protoplasts by Streptomyces plasmids. J Bacteriol 169:2298–2300
    [Google Scholar]
  28. Matsushima P., McHenney M. A., Baltz R. H. 1989; Transduction and transformation of plasmid DNA in Streptomyces fradiae strains that express different levels of restriction. J Bacteriol 171:3080–3084
    [Google Scholar]
  29. Matsushima P., Broughton C, Turner J. R., Baltz R. H. 1994; Conjugal transfer of cosmid DNA from ’Escherichia coli to Saccharo-polyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene 146:39–45
    [Google Scholar]
  30. Mazodier P., Petter R., Thompson C. 1989; Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585
    [Google Scholar]
  31. McHenney M. A., Baltz R. H. 1988; Transduction of plasmid DNA in Streptomyces spp. and related genera by bacteriophage FP43. J Bacteriol 170:2276–2282
    [Google Scholar]
  32. McHenney M. A., Baltz R. H. 1991; Transposition of Tn5096 from a temperature sensitive transducible plasmid in Streptomyces spp. J Bacteriol 173:5578–5581
    [Google Scholar]
  33. Rao R. N., Richardson M. A., Kuhstoss S. 1987; Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol 153:166–198
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Simon R., Preifer U., Punier A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio J Technology 1:784–791
    [Google Scholar]
  36. Solenberg P. J., Burgett S. G. 1989; Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, from Streptomyces lividans. J Bacteriol 171:4807–4813
    [Google Scholar]
  37. Thomas D. I., Cove J. H., Baumberg S., Jones C. A., Rudd B. A. M. 1991; Plasmid effects on secondary metabolite production by a streptomycete synthesizing an anthelmintic macrolide. J Gen Microbiol 137:2331–2337
    [Google Scholar]
  38. Waksman S. A. 1961; Classification, identification and description of genera and species. The Actinomycetes II328–334 Baltimore: Williams and Wilkins;
    [Google Scholar]
  39. Yamamoto H., Maures K. H., Hutchinson C. R. 1986; Transformation of Streptomyces erythraeus. J Antibiot 39:1304–1313
    [Google Scholar]
  40. Zmijewski M. J., Briggs B., Logan R., Boeck L. D. 1987; Biosynthetic studies on antibiotic A47934. Antimicrob Agents Chemother 31:1497–1501
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-2-261
Loading
/content/journal/micro/10.1099/13500872-142-2-261
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error