1887

Abstract

NCTC 8325 exhibited a long lag phase (11 h) when inoculated into defined medium lacking proline, that could be shortened by increasing the concentration of arginine in the medium, or by supplying ornithine. Radioactivity from L-[C]arginine, but not -[C]glutamate was incorporated into a spot with the chromatographic mobility of [C]proline in the pool metabolites fraction. Selection for transposon Tn mutants impaired in arginine catabolism yielded four proline auxotrophs. Enzyme assays and precursor feeding experiments suggested that the major pathway for proline biosynthesis in was from arginine via ornithine and -pyrroline 5-carboxylate, rather than from glutamate. Strain 8325 Pro, a proline prototrophic variant obtained by cultivation of 8325 in the absence of proline, accumulated L-[C]arginine from the medium at about eight times the rate of strain 8325, suggesting its response to proline starvation was to increase arginine uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-6-1491
1996-06-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/6/mic-142-6-1491.html?itemId=/content/journal/micro/10.1099/13500872-142-6-1491&mimeType=html&fmt=ahah

References

  1. Abdelal A.T. Arginine catabolism by microorganisms. Amu Rev Microbiol 1979; 33:139–168
    [Google Scholar]
  2. Archibald A.R., Heckeis J.E. Alterations in the composition and bacteriophage-binding properties of walls of Staphylococcus aureus H grown in continuous culture in simplified defined medium. Biochim Biophys Acta 1975; 406:60–67
    [Google Scholar]
  3. Baumberg S., Klingel U. Biosynthesis of arginine, proline and related compounds. In Bacillus subtilis and Other Gram-positive Bacteria 1993 Edited by Sonenshein A.L., Hoch J.A., Losick R. Washington, DC: American Society for Microbiology; pp 299–306
    [Google Scholar]
  4. Bildingmeyer B.A., Cohen S., A. & Tarvin T.L. Rapid analysis of amino acids using pre-column derivatization. J Chroma-togr 1984; 336:93–104
    [Google Scholar]
  5. Brand riss M.C., Falvey D.A. Proline biosynthesis in Saccharomyces cerevisiae\ analysis of the pro3 gene, which encodes pyrroline-5-carboxylate reductase. J Bacteriol 1992; 174:3782–3788
    [Google Scholar]
  6. Christian J.H.B. The effects of washing treatments on the composition of Staphylococcus aureus. Aust J Biol Sei 1961; 15:324–332
    [Google Scholar]
  7. Cunin R., Glansdorff N., Pigrard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 1986; 50:314–352
    [Google Scholar]
  8. Debarbouille M., Martin-Verstraete I., Kunst I., Rapoport G. The Bacillus subtilis sigE gene encodes an equivalent of sigma 54 from Gram-negative bacteria. Proc Natl Acad Sei USA 1991; 88:9092–9096
    [Google Scholar]
  9. Deguchi T., Morishita T. Nutritional requirements in multiple auxotrophic lactic acid bacteria: genetic lesions affecting amino acid biosynthesis in Eactococcus lactis, Enterococcus faecalis and Pediococcus acidilactici. Biosci Biotechnol Biochem 1992; 56:913–918
    [Google Scholar]
  10. Delorme C., Godon J.J., Ehrlich S.D., Renault P. Gene inactivation in Eactococcus lactis: histidine biosynthesis. J Bacteriol 1993; 175:4391–4399
    [Google Scholar]
  11. Emmett M., Kloos W.E. Amino acid requirements of staphylococci isolated from human skin. Can J Microbiol 1975; 21:729–733
    [Google Scholar]
  12. Faquin W.C., Oliver J.D. Arginine uptake by a psychrophilic marine Vibrio sp. during starvation-induced morphogenesis. J Gen Microbiol 1984; 130:1331–1335
    [Google Scholar]
  13. Fisher S.H. Utilization of amino acids and other nitrogen-containing compounds. In Bacillus subtilis and Other Gram-positive Bacteria 1993 Edited by Sonenshein A.L., Hoch J.A., Losick R. Washington, DC: American Society for Microbiology; pp 221–228
    [Google Scholar]
  14. Gladstone G.P. The nutrition of Staphylococcus aureus: nitrogen requirements. Brit J Exp Pathol 1937; 18:322–333
    [Google Scholar]
  15. Godon J.J., Delorme C., Bardowski J., Chopin M.C., Ehrlich S.D., Renault P. Gene inactivation in Eactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol 1993; 175:4383–4390
    [Google Scholar]
  16. Graham J.E., Wilkinson B.J. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline and taurine. J Bacteriol 1992; 174:2711–2716
    [Google Scholar]
  17. Harwood C.R., Baumberg S. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol 1977; 100:177–188
    [Google Scholar]
  18. Hayzer D.J., Leisinger T. Proline biosynthesis in Escherichia coli. Biochem J 1981; 197:269–274
    [Google Scholar]
  19. Jayaswal R.K., Lee Y.-L., Wilkinson B.J. Cloning and expression of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. J Bacteriol 1990; 172:5783–5788
    [Google Scholar]
  20. Kolter R., Siegele D.A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol 1993; 46:855–874
    [Google Scholar]
  21. Konetschny-Rapp S., Jung G., Meiwes J., Zahner H. Staphyloferrin A: a structurally new siderophore from staphylococci. Eur J Biochem 1990; 191:65–74
    [Google Scholar]
  22. Krasuski A. Urea and arginine catabolism in S. aureus I. Relationships. In Staphylococci and Staphylococcal Infections 1981 Edited by Jeljaszewicz J. Stuttgart and New York: Gustav Fisher Verlag; pp 413–416
    [Google Scholar]
  23. Laishley E.J., Bernlohr R.W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol 1968; 96:322–329
    [Google Scholar]
  24. Leisinger T. Proline biosynthesis. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology 1987 Edited by Neidhardt F., Ingraham J.L., Low K., Magasanik B., Schaechter M., Umbarger H. Washington, DC: American Society for Microbiology; 1 pp 345–357
    [Google Scholar]
  25. Martin P.R., Mulks M.H. Molecular characterization of the argj mutation in Neisseria gonorrhoeae strains with requirements for arginine, hypoxanthine and uracil. Infect Immun 1992; 60:970–975
    [Google Scholar]
  26. Miozzari G., Yanofsky C. Naturally occurring promoter down mutation: nucleotide sequence of the trp promoter/ operator/leader region of Shigella dysenteriae 16. Proc Natl Acad Sei USA 1978; 75:5580–5584
    [Google Scholar]
  27. Morishita T., Fukada T., Shirota M., Yura T. Genetic basis of nutritional requirements in Eactobacillus casei. J Bacteriol 1974; 120:1078–1084
    [Google Scholar]
  28. Morishita T., Degushi Y., Yajima M., Saturai T., Yura T. Multiple nutritional requirement of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol 1981; 148:64–74
    [Google Scholar]
  29. Mountain A., Baumberg S. Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol Gen Genet 1980; 178:691–701
    [Google Scholar]
  30. Novick R.P. Genetic systems in staphylococci. Methods Enzymol 1991; 204:587–636
    [Google Scholar]
  31. Obbink D.J.G., Campbell J.J.R. Derepression of a proline transport system in Staphylococcus aureus. Can J Microbiol 1973; 19:397–401
    [Google Scholar]
  32. Rahman M., Clarke P.H. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. J Gen Microbiol 1980; 116:357–369
    [Google Scholar]
  33. Shirazi I., Tarshis M., Rottem S. An arginine/ornithine exchange system in Spiroplasma melliferum. Microbiology 1995; 141:2323–2328
    [Google Scholar]
  34. Steltes C., Ellis J., Wu J., Rosen B.P. The lysP gene encodes the lysine-specific permease. J Bacteriol 1992; 174:3242–3249
    [Google Scholar]
  35. Townsend D.E., Wilkinson B.J. Proline transport in Staphylococcus aureus: a high affinity system and a low affinity system involved in osmoregulation. J Bacteriol 1992; 174:2702–2710
    [Google Scholar]
  36. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Williams I., Frank L. Improved chemical synthesis and enzymatic assay of pyrroline-5-carboxylic acid. Anal Biochem 1975; 64:85–97
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-6-1491
Loading
/content/journal/micro/10.1099/13500872-142-6-1491
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error