1887

Abstract

Isolates of , except , are generally prototrophic; they do not require any growth factors to grow in mineral medium. However, a nicotinic acid requirement is common among B2 phylogroup STc95 O18 clone strains. Nicotinic acid is a precursor of nicotinamide adenine dinucleotide (NAD), an essential molecule that plays central role in cellular metabolism. The defect in NAD synthesis of these strains is due to alterations in biosynthesis pathway gene. Here, by studying growth on minimal medium with glycolytic (glucose) or gluconeogenic (pyruvate or succinate) substrates as the carbon supply in a large panel of natural isolates representative of the species diversity, we identify an absolute nicotinic acid requirement in non-STc95 strains due in one case to a inactivation. The growth on glucose medium of some extraintestinal pathogenic strains belonging to various non-O18 B2 phylogroup STc95 clones is restored either by aspartate or nicotinate, demonstrating that the nicotinic acid requirement can also be due to an intracellular aspartate depletion. The auxotrophic requirements depend on the carbon source available in the environment. Moreover, some strains prototrophic in glucose medium become auxotrophic in succinate medium, and conversely, some strainsauxotrophic in glucose medium become prototrophic in succinate medium. Finally, a partial depletion of intracellular aspartate can be observed in some prototrophic strains belonging to various phylogroups. The observed more or less significant depletion according to isolates may be due to differences in tricarboxylic acid cycle enzyme activities. These metabolic defects could be involved in the adaptation of to its various niches.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000482
2017-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/6/891.html?itemId=/content/journal/micro/10.1099/mic.0.000482&mimeType=html&fmt=ahah

References

  1. Sabarly V, Aubron C, Glodt J, Balliau T, Langella O et al. Interactions between genotype and environment drive the metabolic phenotype within Escherichia coli isolates. Environ Microbiol 2016; 18:100–117 [View Article][PubMed]
    [Google Scholar]
  2. Savageau MA. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 1983; 122:732–744 [View Article]
    [Google Scholar]
  3. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008; 190:6881–6893 [View Article][PubMed]
    [Google Scholar]
  4. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009; 5:e1000344 [View Article][PubMed]
    [Google Scholar]
  5. Desjardins P, Picard B, Kaltenböck B, Elion J, Denamur E. Sex in Escherichia coli does not disrupt the clonal structure of the population: evidence from random amplified polymorphic DNA and restriction-fragment-length polymorphism. J Mol Evol 1995; 41:440–448 [View Article][PubMed]
    [Google Scholar]
  6. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013; 5:58–65 [View Article][PubMed]
    [Google Scholar]
  7. Pupo GM, Lan R, Reeves PR. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 2000; 97:10567–10572 [View Article][PubMed]
    [Google Scholar]
  8. Escobar-Páramo P, Giudicelli C, Parsot C, Denamur E. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J Mol Evol 2003; 57:140–148 [View Article][PubMed]
    [Google Scholar]
  9. Yang F, Yang J, Zhang X, Chen L, Jiang Y et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 2005; 33:6445–6458 [View Article][PubMed]
    [Google Scholar]
  10. Hottes AK, Freddolino PL, Khare A, Donnell ZN, Liu JC et al. Bacterial adaptation through loss of function. PLoS Genet 2013; 9:e1003617 [View Article][PubMed]
    [Google Scholar]
  11. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci USA 2013; 110:20338–20343 [View Article][PubMed]
    [Google Scholar]
  12. Ahmed ZU, Sarker MR, Sack DA. Nutritional requirements of Shigellae for growth in a minimal medium. Infect Immun 1988; 56:1007–1009[PubMed]
    [Google Scholar]
  13. Kunin CM, Hua TH, Krishnan C, White LV. Do temperature-sensitive auxotrophs of Escherichia coli have special virulence?. J Clin Microbiol 1993; 31:47–49[PubMed]
    [Google Scholar]
  14. Kunin CM, Hua TH, Krishnan C, Van Arsdale White L, Hacker J. Isolation of a nicotinamide-requiring clone of Escherichia coli O18:K1:H7 from women with acute cystitis: resemblance to strains found in neonatal meningitis. Clin Infect Dis 1993; 16:412–416 [View Article][PubMed]
    [Google Scholar]
  15. Di Martino ML, Fioravanti R, Barbabella G, Prosseda G, Colonna B et al. Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype. Int J Med Microbiol 2013; 303:651–661 [View Article][PubMed]
    [Google Scholar]
  16. Osterman A. Biogenesis and homeostasis of nicotinamide adenine dinucleotide cofactor. EcoSal Plus 2009; 3: [View Article][PubMed]
    [Google Scholar]
  17. Hughes KT, Roth JR, Olivera BM. A genetic characterization of the nadC gene of Salmonella typhimurium. Genetics 1991; 127:657–670[PubMed]
    [Google Scholar]
  18. Mantis NJ, Sansonetti PJ. The nadB gene of Salmonella typhimurium complements the nicotinic acid auxotrophy of Shigella flexneri. Mol Gen Genet 1996; 252:626–629[PubMed]
    [Google Scholar]
  19. Bergthorsson U, Roth JR. Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol 2005; 187:400–403 [View Article][PubMed]
    [Google Scholar]
  20. Prunier AL, Schuch R, Fernández RE, Maurelli AT. Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J Bacteriol 2007; 189:6482–6486 [View Article][PubMed]
    [Google Scholar]
  21. Li Z, Bouckaert J, Deboeck F, de Greve H, Hernalsteens JP. Nicotinamide dependence of uropathogenic Escherichia coli UTI89 and application of nadB as a neutral insertion site. Microbiology 2012; 158:736–745 [View Article][PubMed]
    [Google Scholar]
  22. Holliday R. A new method for the identification of biochemical mutants of micro-organisms. Nature 1956; 178:987 [View Article]
    [Google Scholar]
  23. Lederberg J. In: Gerald R (editor). Method in Medical Research vol. 3 Chicago: The Year Book Publishers, Inc; 1950 p. 5
    [Google Scholar]
  24. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L et al. MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford) 2009; 2009:bap021 [View Article][PubMed]
    [Google Scholar]
  25. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N et al. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999; 67:546–553[PubMed]
    [Google Scholar]
  26. Gordon DM, Geyik S, Clermont O, O'Brien CL, Huang S et al. Fine-scale structure analysis shows epidemic patterns of clonal complex 95, a cosmopolitan Escherichia coli lineage responsible for extraintestinal infection. mSphere 2017; 2:e00168-17 [View Article][PubMed]
    [Google Scholar]
  27. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF et al. The molecular diversity of adaptive convergence. Science 2012; 335:457–461 [View Article][PubMed]
    [Google Scholar]
  28. Sabarly V, Bouvet O, Glodt J, Clermont O, Skurnik D et al. The decoupling between genetic structure and metabolic phenotypes in Escherichia coli leads to continuous phenotypic diversity. J Evol Biol 2011; 24:1559–1571 [View Article][PubMed]
    [Google Scholar]
  29. Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE et al. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect Immun 2004; 72:1666–1676 [View Article][PubMed]
    [Google Scholar]
  30. Alteri CJ, Mobley HL. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 2012; 15:3–9 [View Article][PubMed]
    [Google Scholar]
  31. Clermont O, Gordon D, Denamur E. Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology 2015; 161:980–988 [View Article][PubMed]
    [Google Scholar]
  32. Roux A, Xu Y, Heilier JF, Olivier MF, Ezan E et al. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. Anal Chem 2012; 84:6429–6437 [View Article][PubMed]
    [Google Scholar]
  33. Taguchi K, Fukusaki E, Bamba T. Determination of niacin and its metabolites using supercritical fluid chromatography coupled to tandem mass spectrometry. Mass Spectrom (Tokyo) 2014; 3:A0029 [View Article][PubMed]
    [Google Scholar]
  34. Aubron C, Glodt J, Matar C, Huet O, Borderie D et al. Variation in endogenous oxidative stress in Escherichia coli natural isolates during growth in urine. BMC Microbiol 2012; 12:120 [View Article][PubMed]
    [Google Scholar]
  35. Nam TW, Park YH, Jeong HJ, Ryu S, Seok YJ. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex. Nucleic Acids Res 2005; 33:6712–6722 [View Article][PubMed]
    [Google Scholar]
  36. Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011; 6:e20081 [View Article][PubMed]
    [Google Scholar]
  37. D'Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet 2016; 12:e1006364 [View Article][PubMed]
    [Google Scholar]
  38. Zamenhof S, Eichhorn HH. Study of microbial evolution through loss of biosynthetic functions: establishment of "defective" mutants. Nature 1967; 216:456–458 [View Article][PubMed]
    [Google Scholar]
  39. Dykhuizen D. Selection for tryptophan auxotrophs of Escherichia coli in glucose-limited chemostats as a test of the energy conservation hypothesis of evolution. Evolution 1978; 32:125–150 [View Article]
    [Google Scholar]
  40. D'Souza G, Waschina S, Pande S, Bohl K, Kaleta C et al. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 2014; 68:2559–2570 [View Article][PubMed]
    [Google Scholar]
  41. D'Souza G, Waschina S, Kaleta C, Kost C. Plasticity and epistasis strongly affect bacterial fitness after losing multiple metabolic genes. Evolution 2015; 69:1244–1254 [View Article][PubMed]
    [Google Scholar]
  42. Korshunov S, Imlay JA. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol 2010; 75:1389–1401 [View Article][PubMed]
    [Google Scholar]
  43. Farr SB, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 1991; 55:561–585[PubMed]
    [Google Scholar]
  44. Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2000; 54:439–461 [View Article][PubMed]
    [Google Scholar]
  45. Cronan JE Jr, Laporte D. Tricarboxylic acid cycle and glyoxylate bypass. EcoSal Plus 2005; 1: [View Article][PubMed]
    [Google Scholar]
  46. Maurelli AT, Fernández RE, Bloch CA, Rode CK, Fasano A. "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci USA 1998; 95:3943–3948 [View Article][PubMed]
    [Google Scholar]
  47. Prunier AL, Schuch R, Fernández RE, Mumy KL, Kohler H et al. nadA and nadB of Shigella flexneri 5a are antivirulence loci responsible for the synthesis of quinolinate, a small molecule inhibitor of Shigella pathogenicity. Microbiology 2007; 153:2363–2372 [View Article][PubMed]
    [Google Scholar]
  48. Domergue R, Castaño I, De Las Peñas A, Zupancic M, Lockatell V et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 2005; 308:866–870 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000482
Loading
/content/journal/micro/10.1099/mic.0.000482
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error