1887

Abstract

The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.

Funding
This study was supported by the:
  • European Training Networks (Award BactiVax, MSCA-ITN-2019)
    • Principle Award Recipient: MiguelA Valvano
  • Cystic Fibrosis Foundation (Award VALVAN19G0)
    • Principle Award Recipient: MiguelA Valvano
  • Biotechnology and Biological Sciences Research Council (Award BB/S0066281/1)
    • Principle Award Recipient: MiguelA Valvano
  • Biotechnology and Biological Sciences Research Council (Award BB/T005807)
    • Principle Award Recipient: MiguelA Valvano
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001159
2022-04-08
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/4/mic001159.html?itemId=/content/journal/micro/10.1099/mic.0.001159&mimeType=html&fmt=ahah

References

  1. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67:593–656 [View Article] [PubMed]
    [Google Scholar]
  2. Whitfield C, Trent MS. Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 2014; 83:99–128 [View Article] [PubMed]
    [Google Scholar]
  3. Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 2018; 14:417–427 [View Article] [PubMed]
    [Google Scholar]
  4. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526:666–671 [View Article] [PubMed]
    [Google Scholar]
  5. Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526:660–665 [View Article] [PubMed]
    [Google Scholar]
  6. Barker JH, Weiss JP. Detecting lipopolysaccharide in the cytosol of mammalian cells: Lessons from MD-2/TLR4. J Leukoc Biol 2019; 106:127–132 [View Article] [PubMed]
    [Google Scholar]
  7. Valvano MA, Patel KB, Furlong SE. Genetics, biosynthesis and assembly of O antigen. In Knirel YA, Valvano MA. eds Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells Wein: Springer Verlag Publishing Inc; 2011237–273
    [Google Scholar]
  8. Mamat U, Skurnik M, Bengoechea JA. LPS core oligosaccharide biosynthesis and assembly. In Knirel YA, Valvano MA. eds Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Internaction with Host Cells Vienna: Sptinger-Verlag; 2011 pp 237–273
    [Google Scholar]
  9. Whitfield C, Wear SS, Sande C. Assembly of bacterial capsular polysaccharides and exopolysaccharides. Annu Rev Microbiol 2020; 74:521–543 [View Article] [PubMed]
    [Google Scholar]
  10. Ruan X, Loyola DE, Marolda CL, Perez-Donoso JM, Valvano MA. The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-independent inverting glycosyltransferases. Glycobiology 2012; 22:288–299 [View Article] [PubMed]
    [Google Scholar]
  11. Valvano MA. Undecaprenyl phosphate recycling comes out of age. Mol Microbiol 2008; 67:232–235 [View Article] [PubMed]
    [Google Scholar]
  12. Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 2008; 67:264–277 [View Article] [PubMed]
    [Google Scholar]
  13. Wilson A, Ruiz N. Transport of lipopolysaccharides and phospholipids to the outer membrane. Curr Opin Microbiol 2021; 60:51–57 [View Article] [PubMed]
    [Google Scholar]
  14. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 2016; 14:337–345 [View Article] [PubMed]
    [Google Scholar]
  15. Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S et al. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science 2018; 359:798–801 [View Article] [PubMed]
    [Google Scholar]
  16. Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11:467–481 [View Article] [PubMed]
    [Google Scholar]
  17. Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to Gram-negative bacteria. Curr Opin Microbiol 2013; 16:779–785 [View Article] [PubMed]
    [Google Scholar]
  18. Knirel YA, Valvano MA. Lipopolysacchairde export to the outer membrane. In Knirel Y, Valvano MA. eds Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells Wien: Springer-Verlag; 2011 p 311
    [Google Scholar]
  19. Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 2012; 356:12–24 [View Article] [PubMed]
    [Google Scholar]
  20. Klein G, Wieczorek A, Szuster M, Raina S. Checkpoints that regulate balanced biosynthesis of lipopolysaccharide and its essentiality in Escherichia coli. IJMS 2021; 23:189 [View Article]
    [Google Scholar]
  21. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71:635–700 [View Article] [PubMed]
    [Google Scholar]
  22. Anderson MS, Raetz CR. Biosynthesis of lipid A precursors in Escherichia coli. A cytoplasmic acyltransferase that converts UDP-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. J Biol Chem 1987; 262:5159–5169 [PubMed]
    [Google Scholar]
  23. Wyckoff TJ, Lin S, Cotter RJ, Dotson GD, Raetz CR. Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J Biol Chem 1998; 273:32369–32372 [View Article] [PubMed]
    [Google Scholar]
  24. Raetz CR, Roderick SL. A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 1995; 270:997–1000 [View Article] [PubMed]
    [Google Scholar]
  25. Ulaganathan V, Buetow L, Hunter WN. Nucleotide substrate recognition by UDP-N-acetylglucosamine acyltransferase (LpxA) in the first step of lipid A biosynthesis. J Mol Biol 2007; 369:305–312 [View Article] [PubMed]
    [Google Scholar]
  26. Odegaard TJ, Kaltashov IA, Cotter RJ, Steeghs L, van der Ley P et al. Shortened hydroxyacyl chains on lipid A of Escherichia coli cells expressing a foreign UDP-N-acetylglucosamine O-acyltransferase. J Biol Chem 1997; 272:19688–19696 [View Article]
    [Google Scholar]
  27. Bainbridge BW, Karimi-Naser L, Reife R, Blethen F, Ernst RK et al. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in undefined Porphyromonas gingivalis. J Bacteriol 2008; 190:4549–4558 [View Article]
    [Google Scholar]
  28. Sweet CR, Preston A, Toland E, Ramirez SM, Cotter RJ et al. Relaxed acyl chain specificity of Bordetella UDP-N-acetylglucosamine acyltransferases. J Biol Chem 2002; 277:18281–18290 [View Article]
    [Google Scholar]
  29. Sweet CR, Ribeiro AA, Raetz CRH. Oxidation and transamination of the 3-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid a molecules with four amide-linked acyl chains. J Biol Chem 2004; 279:25400–25410 [View Article]
    [Google Scholar]
  30. Sweet CR, Williams AH, Karbarz MJ, Werts C, Kalb SR et al. Enzymatic synthesis of lipid A molecules with four amide-linked acyl chains. LpxA acyltransferases selective for an analog of UDP-N-acetylglucosamine in which an amine replaces the 3"-hydroxyl group. J Biol Chem 2004; 279:25411–25419 [View Article]
    [Google Scholar]
  31. van Mourik A, Steeghs L, van Laar J, Meiring HD, Hamstra H-J et al. Altered linkage of hydroxyacyl chains in lipid A of Campylobacter jejuni reduces TLR4 activation and antimicrobial resistance. J Biol Chem 2010; 285:15828–15836 [View Article]
    [Google Scholar]
  32. Anderson MS, Bull HG, Galloway SM, Kelly TM, Mohan S et al. UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J Biol Chem 1993; 268:19858–19865 [View Article]
    [Google Scholar]
  33. Erwin AL. Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme LpxC. Cold Spring Harb Perspect Med 2016; 6:a025304 [View Article]
    [Google Scholar]
  34. Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 2009; 160:652–659 [View Article]
    [Google Scholar]
  35. Schäkermann M, Langklotz S, Narberhaus F. FtsH-mediated coordination of lipopolysaccharide biosynthesis in Escherichia coli correlates with the growth rate and the alarmone (p)ppGpp. J Bacteriol 2013; 195:1912–1919 [View Article]
    [Google Scholar]
  36. Katz C, Ron EZ. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 2008; 190:7117–7122 [View Article] [PubMed]
    [Google Scholar]
  37. Prince C, Jia Z. An unexpected duo: Rubredoxin binds nine TPR motifs to form LapB, an essential regulator of lipopolysaccharide synthesis. Structure 2015; 23:1500–1506 [View Article] [PubMed]
    [Google Scholar]
  38. Nicolaes V, El Hajjaji H, Davis RM, Van der Henst C, Depuydt M et al. Insights into the function of YciM, a heat shock membrane protein required to maintain envelope integrity in Escherichia coli. J Bacteriol 2014; 196:300–309 [View Article] [PubMed]
    [Google Scholar]
  39. Klein G, Kobylak N, Lindner B, Stupak A, Raina S. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J Biol Chem 2014; 289:14829–14853 [View Article] [PubMed]
    [Google Scholar]
  40. Guest RL, Samé Guerra D, Wissler M, Grimm J, Silhavy TJ. YejM modulates activity of the YciM/FtsH protease complex to prevent lethal accumulation of lipopolysaccharide. mBio 2020; 11:e00598-20 [View Article] [PubMed]
    [Google Scholar]
  41. Nguyen D, Kelly K, Qiu N, Misra R, Mullineaux CW. YejM controls LpxC levels by regulating protease activity of the FtsH/YciM complex of Escherichia coli. J Bacteriol 2020; 202:18 [View Article]
    [Google Scholar]
  42. Fivenson EM, Bernhardt TG. An essential membrane protein modulates the proteolysis of LpxC to control lipopolysaccharide synthesis in Escherichia coli. mBio 2020; 11:e00939-20 [View Article]
    [Google Scholar]
  43. Biernacka D, Gorzelak P, Klein G, Raina S. Regulation of the first committed step in lipopolysaccharide biosynthesis catalyzed by LpxC requires the essential protein LapC (YejM) and HslVU protease. Int J Mol Sci 2020; 21:23 [View Article]
    [Google Scholar]
  44. Kelly TM, Stachula SA, Raetz CR, Anderson MS. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J Biol Chem 1993; 268:19866–19874
    [Google Scholar]
  45. Bartling CM, Raetz CRH. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 2009; 48:8672–8683 [View Article]
    [Google Scholar]
  46. Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc Natl Acad Sci U S A 2007; 104:4321–4326 [View Article] [PubMed]
    [Google Scholar]
  47. Kim HJ, Lee CR, Kim M, Peterkofsky A, Seok YJ. Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD. Biochem Biophys Res Commun 2011; 409:556–561 [View Article] [PubMed]
    [Google Scholar]
  48. Babinski KJ, Ribeiro AA, Raetz CRH. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J Biol Chem 2002; 277:25937–25946 [View Article] [PubMed]
    [Google Scholar]
  49. Radika K, Raetz CR. Purification and properties of lipid A disaccharide synthase of Escherichia coli. J Biol Chem 1988; 263:14859–14867 [View Article] [PubMed]
    [Google Scholar]
  50. Metzger LE 4th, Raetz CRH. An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis. Biochemistry 2010; 49:6715–6726 [View Article] [PubMed]
    [Google Scholar]
  51. Garrett TA, Kadrmas JL, Raetz CR. Identification of the gene encoding the Escherichia coli lipid A 4’-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J Biol Chem 1997; 272:21855–21864 [View Article] [PubMed]
    [Google Scholar]
  52. Garrett TA, Que NL, Raetz CR. Accumulation of A lipid A precursor lacking the 4’-phosphate following inactivation of the Escherichia coli lpxK gene. J Biol Chem 1998; 273:12457–12465 [View Article] [PubMed]
    [Google Scholar]
  53. Ray BL, Raetz CR. The biosynthesis of gram-negative endotoxin. A novel kinase in Escherichia coli membranes that incorporates the 4’-phosphate of lipid A. J Biol Chem 1987; 262:1122–1128 [View Article] [PubMed]
    [Google Scholar]
  54. Brozek KA, Raetz CRH. Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 1990; 265:15410–15417 [View Article] [PubMed]
    [Google Scholar]
  55. Brozek KA, Hosaka K, Robertson AD, Raetz CR. Biosynthesis of lipopolysaccharide in Escherichia coli. Cytoplasmic enzymes that attach 3-deoxy-D-manno-octulosonic acid to lipid A. J Biol Chem 1989; 264:6956–6966 [View Article] [PubMed]
    [Google Scholar]
  56. Clementz T, Raetz CRH. A gene coding for 3-deoxy-D-manno- octulosonic-acid transferase in Escherichia coli. Identification, mapping, cloning, and sequencing. J Biol Chem 1991; 266:9687–9696 [PubMed]
    [Google Scholar]
  57. Belunis CJ, Raetz CR. Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli. J Biol Chem 1992; 267:9988–9997 [PubMed]
    [Google Scholar]
  58. Bode CE, Brabetz W, Brade H. Cloning and characterization of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase genes (kdtA) from Acinetobacter baumannii and Acinetobacter haemolyticus. Eur J Biochem 1998; 254:404–412 [View Article] [PubMed]
    [Google Scholar]
  59. Brabetz W, Schirmer CE, Brade H. 3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase of Legionella pneumophila transfers two kdo residues to a structurally different lipid A precursor of Escherichia coli. J Bacteriol 2000; 182:4654–4657 [View Article] [PubMed]
    [Google Scholar]
  60. Mamat U, Schmidt H, Munoz E, Lindner B, Fukase K et al. WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-D-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. J Biol Chem 2009; 284:22248–22262 [View Article] [PubMed]
    [Google Scholar]
  61. Belunis CJ, Clementz T, Carty SM, Raetz CR. Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem 1995; 270:27646–27652 [View Article] [PubMed]
    [Google Scholar]
  62. Brabetz W, Lindner B, Brade H. Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12. Eur J Biochem 2000; 267:5458–5465 [View Article] [PubMed]
    [Google Scholar]
  63. Rund S, Lindner B, Brade H, Holst O. Structural analysis of the lipopolysaccharide from Chlamydophila psittaci strain 6BC. Eur J Biochem 2000; 267:5717–5726 [View Article] [PubMed]
    [Google Scholar]
  64. Hankins JV, Trent MS. Secondary acylation of Vibrio cholerae lipopolysaccharide requires phosphorylation of Kdo. J Biol Chem 2009; 284:25804–25812 [View Article] [PubMed]
    [Google Scholar]
  65. White KA, Kaltashov IA, Cotter RJ, Raetz CR. A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and aA Kdo kinase in extracts of Haemophilus influenzae. J Biol Chem 1997; 272:16555–16563 [View Article] [PubMed]
    [Google Scholar]
  66. Isobe T, White KA, Allen AG, Peacock M, Raetz CR et al. Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy-D-manno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation. J Bacteriol 1999; 181:2648–2651 [View Article] [PubMed]
    [Google Scholar]
  67. Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B et al. Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc Natl Acad Sci U S A 2012; 109:6253–6258 [View Article] [PubMed]
    [Google Scholar]
  68. Chung HS, Raetz CRH. Interchangeable domains in the Kdo transferases of Escherichia coli and Haemophilus influenzae. Biochemistry 2010; 49:4126–4137 [View Article] [PubMed]
    [Google Scholar]
  69. Clementz T, Bednarski JJ, Raetz CR. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J Biol Chem 1996; 271:12095–12102 [View Article] [PubMed]
    [Google Scholar]
  70. Clementz T, Zhou Z, Raetz CR. Function of the Escherichia coli msbB gene, A multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J Biol Chem 1997; 272:10353–10360 [View Article] [PubMed]
    [Google Scholar]
  71. White KA, Lin S, Cotter RJ, Raetz CR. A Haemophilus influenzae gene that encodes A membrane bound 3-deoxy-D-manno-octulosonic acid (Kdo) kinase. Possible involvement of kdo phosphorylation in bacterial virulence. J Biol Chem 1999; 274:31391–31400 [View Article] [PubMed]
    [Google Scholar]
  72. Rubin EJ, O’Brien JP, Ivanov PL, Brodbelt JS, Trent MS. Identification of A broad family of lipid A late acyltransferases with non-canonical substrate specificity. Mol Microbiol 2014; 91:887–899 [View Article] [PubMed]
    [Google Scholar]
  73. Stead CM, Beasley A, Cotter RJ, Trent MS. Deciphering the unusual acylation pattern of Helicobacter pylori lipid A. J Bacteriol 2008; 190:7012–7021 [View Article] [PubMed]
    [Google Scholar]
  74. Mohan S, Raetz CR. Endotoxin biosynthesis in Pseudomonas aeruginosa: enzymatic incorporation of laurate before 3-deoxy-D-manno-octulosonate. J Bacteriol 1994; 176:6944–6951 [View Article] [PubMed]
    [Google Scholar]
  75. Goldman RC, Doran CC, Kadam SK, Capobianco JO. Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-D-manno-octulosonate. J Biol Chem 1988; 263:5217–5223 [PubMed]
    [Google Scholar]
  76. Tzeng YL, Datta A, Kolli VK, Carlson RW, Stephens DS. Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase. J Bacteriol 2002; 184:2379–2388 [View Article] [PubMed]
    [Google Scholar]
  77. Boll JM, Tucker AT, Klein DR, Beltran AM, Brodbelt JS et al. Reinforcing lipid a acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. mBio 2015; 6:e00478–15 [View Article] [PubMed]
    [Google Scholar]
  78. Basu SS, Karbarz MJ, Raetz CRH. Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum. J Biol Chem 2002; 277:28959–28971 [View Article] [PubMed]
    [Google Scholar]
  79. Haag AF, Wehmeier S, Beck S, Marlow VL, Fletcher V et al. The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa. J Bacteriol 2009; 191:4681–4686 [View Article] [PubMed]
    [Google Scholar]
  80. Carty SM, Sreekumar KR, Raetz CR. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 1999; 274:9677–9685 [View Article] [PubMed]
    [Google Scholar]
  81. Herrera CM, Voss BJ, Trent MS. Homeoviscous adaptation of the Acinetobacter baumannii outer membrane: Alteration of lipooligosaccharide structure during cold stress. mBio 2021; 12:e0129521 [View Article] [PubMed]
    [Google Scholar]
  82. Tran AX, Lester ME, Stead CM, Raetz CRH, Maskell DJ et al. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 2005; 280:28186–28194 [View Article] [PubMed]
    [Google Scholar]
  83. Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol Microbiol 2012; 85:962–974 [View Article] [PubMed]
    [Google Scholar]
  84. Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M et al. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci U S A 2013; 110:1464–1469 [View Article] [PubMed]
    [Google Scholar]
  85. Stukey J, Carman GM. Identification of a novel phosphatase sequence motif. Protein Sci 1997; 6:469–472 [View Article] [PubMed]
    [Google Scholar]
  86. Karbarz MJ, Kalb SR, Cotter RJ, Raetz CRH. Expression cloning and biochemical characterization of a Rhizobium leguminosarum Lipid A 1-phosphatase. J Biol Chem 2003; 278:39269–39279 [View Article]
    [Google Scholar]
  87. Ingram BO, Sohlenkamp C, Geiger O, Raetz CRH. Altered lipid A structures and polymyxin hypersensitivity of Rhizobium etli mutants lacking the LpxE and LpxF phosphatases. Biochim Biophys Acta 2010; 1801:593–604
    [Google Scholar]
  88. Tran AX, Karbarz MJ, Wang X, Raetz CRH, McGrath SC et al. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J Biol Chem 2004; 279:55780–55791 [View Article]
    [Google Scholar]
  89. Tran AX, Whittimore JD, Wyrick PB, McGrath SC, Cotter RJ et al. The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin. J Bacteriol 2006; 188:4531–4541 [View Article]
    [Google Scholar]
  90. Wang X, Ribeiro AA, Guan Z, Abraham SN, Raetz CRH. Attenuated virulence of A Francisella mutant lacking the lipid A 4’-phosphatase. Proc Natl Acad Sci U S A 2007; 104:4136–4141 [View Article]
    [Google Scholar]
  91. Vonkavaara M, Pavel STI, Hölzl K, Nordfelth R, Sjöstedt A et al. Francisella is sensitive to insect antimicrobial peptides. J Innate Immun 2013; 5:50–59 [View Article]
    [Google Scholar]
  92. Wang X, Karbarz MJ, McGrath SC, Cotter RJ, Raetz CRH. MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli. J Biol Chem 2004; 279:49470–49478 [View Article]
    [Google Scholar]
  93. Wang X, McGrath SC, Cotter RJ, Raetz CRH. Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4’-phosphatase LpxF. J Biol Chem 2006; 281:9321–9330 [View Article]
    [Google Scholar]
  94. Shaffer SA, Harvey MD, Goodlett DR, Ernst RK. Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry. J Am Soc Mass Spectrom 2007; 18:1080–1092 [View Article]
    [Google Scholar]
  95. Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW et al. Human Toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4’-phosphatase activities. Cell Microbiol 2009; 11:1587–1599 [View Article]
    [Google Scholar]
  96. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of A novel lipid-linked donor. J Biol Chem 2001; 276:43122–43131 [View Article] [PubMed]
    [Google Scholar]
  97. Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ et al. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli. Structural characterization and transfer to lipid A in the periplasm. J Biol Chem 2001; 276:43132–43144 [View Article] [PubMed]
    [Google Scholar]
  98. Wösten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell 2000; 103:113–125 [View Article] [PubMed]
    [Google Scholar]
  99. Gunn JS, Lim KB, Krueger J, Kim K, Guo L et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 1998; 27:1171–1182 [View Article] [PubMed]
    [Google Scholar]
  100. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 2000; 68:6139–6146 [View Article] [PubMed]
    [Google Scholar]
  101. Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS et al. A putative gene cluster for aminoarabinose biosynthesis is essential for undefined Burkholderia cenocepacia viability. J Bacteriol 2007; 189:3639–3644 [View Article] [PubMed]
    [Google Scholar]
  102. Bertani BR, Taylor RJ, Nagy E, Kahne D, Ruiz N. A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane. Molecular Microbiology 2018; 109:541–554 [View Article] [PubMed]
    [Google Scholar]
  103. Chung HS, Raetz CRH. Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide. Proc Natl Acad Sci U S A 2010; 108:510–515 [View Article] [PubMed]
    [Google Scholar]
  104. Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M. Glucosamine found as A substituent of both phosphate groups in Bordetella lipid A backbones: role of A BvgAS-activated ArnT ortholog. J Bacteriol 2008; 190:4281–4290 [View Article] [PubMed]
    [Google Scholar]
  105. Wang X, Ribeiro AA, Guan Z, McGrath SC, Cotter RJ et al. Structure and biosynthesis of free lipid A molecules that replace lipopolysaccharide in Francisella tularensis subsp. novicida. Biochemistry 2006; 45:14427–14440 [View Article] [PubMed]
    [Google Scholar]
  106. Kanistanon D, Hajjar AM, Pelletier MR, Gallagher LA, Kalhorn T et al. A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. PLoS Pathog 2008; 4:e24 [View Article]
    [Google Scholar]
  107. Marr N, Hajjar AM, Shah NR, Novikov A, Yam CS et al. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Infect Immun 2010; 78:2060–2069 [View Article] [PubMed]
    [Google Scholar]
  108. Plötz BM, Lindner B, Stetter KO, Holst O. Characterization of A novel lipid A containing D-galacturonic acid that replaces phosphate residues. The structure of the lipid A of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. J Biol Chem 2000; 275:11222–11228 [View Article]
    [Google Scholar]
  109. Petrou VI, Herrera CM, Schultz KM, Clarke OB, Vendome J et al. Structures of aminoarabinose transferase ArnT suggest A molecular basis for lipid A glycosylation. Science 2016; 351:608–612 [View Article] [PubMed]
    [Google Scholar]
  110. Lizak C, Gerber S, Numao S, Aebi M, Locher KP. X-ray structure of a bacterial oligosaccharyltransferase. Nature 2011; 474:350–355 [View Article] [PubMed]
    [Google Scholar]
  111. Tavares-Carreón F, Fathy Mohamed Y, Andrade A, Valvano MA. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology 2016; 26:286–300 [View Article] [PubMed]
    [Google Scholar]
  112. Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004; 186:4124–4133 [View Article] [PubMed]
    [Google Scholar]
  113. Samantha A, Vrielink A. Lipid A phosphoethanolamine transferase: Regulation, structure and immune response. J Mol Biol 2020; 432:5184–5196 [View Article] [PubMed]
    [Google Scholar]
  114. Cox AD, Wright JC, Gidney MAJ, Lacelle S, Plested JS et al. Identification of a novel inner-core oligosaccharide structure in Neisseria meningitidis lipopolysaccharide. Eur J Biochem 2003; 270:1759–1766 [View Article] [PubMed]
    [Google Scholar]
  115. Tzeng Y-L, Ambrose KD, Zughaier S, Zhou X, Miller YK et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005; 187:5387–5396 [View Article] [PubMed]
    [Google Scholar]
  116. Cullen TW, Trent MS. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc Natl Acad Sci U S A 2010; 107:5160–5165 [View Article] [PubMed]
    [Google Scholar]
  117. Sun J, Zhang H, Liu YH, Feng Y. Towards Understanding MCR-like colistin resistance. Trends Microbiol 2018; 26:794–808 [View Article] [PubMed]
    [Google Scholar]
  118. Nang SC, Li J, Velkov T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol 2019; 45:131–161 [View Article] [PubMed]
    [Google Scholar]
  119. Tatar LD, Marolda CL, Polischuk AN, van Leeuwen D, Valvano MA. An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology (Reading) 2007; 153:2518–2529 [View Article] [PubMed]
    [Google Scholar]
  120. Nowicki EM, O’Brien JP, Brodbelt JS, Trent MS. Characterization of Pseudomonas aeruginosa LpxT reveals dual positional lipid A kinase activity and co-ordinated control of outer membrane modification. Mol Microbiol 2014; 94:728–741 [View Article] [PubMed]
    [Google Scholar]
  121. Boon Hinckley M, Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ et al. A Leptospira interrogans enzyme with similarity to yeast Ste14p that methylates the 1-phosphate group of lipid A. J Biol Chem 2005; 280:30214–30224 [View Article]
    [Google Scholar]
  122. Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 1998; 95:189–198 [View Article]
    [Google Scholar]
  123. Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI et al. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J 2000; 19:5071–5080 [View Article]
    [Google Scholar]
  124. Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ, Raetz CRH et al. An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3’-acyloxyacyl moiety of lipid A. J Biol Chem 2006; 281:21974–21987 [View Article]
    [Google Scholar]
  125. Trent MS, Pabich W, Raetz CRH, Miller SI. A PhoP/PhoQ-induced Lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J Biol Chem 2001; 276:9083–9092 [View Article]
    [Google Scholar]
  126. Bishop RE. Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 2008; 1778:1881–1896 [View Article] [PubMed]
    [Google Scholar]
  127. Hwang PM, Choy W-Y, Lo EI, Chen L, Forman-Kay JD et al. Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 2002; 99:13560–13565 [View Article] [PubMed]
    [Google Scholar]
  128. Hwang PM, Bishop RE, Kay LE. The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci U S A 2004; 101:9618–9623 [View Article] [PubMed]
    [Google Scholar]
  129. Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM et al. A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 2004; 23:2931–2941 [View Article] [PubMed]
    [Google Scholar]
  130. Bishop RE. The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 2005; 57:900–912 [View Article] [PubMed]
    [Google Scholar]
  131. Kawasaki K, Ernst RK, Miller SI. Deacylation and palmitoylation of lipid A by Salmonellae outer membrane enzymes modulate host signaling through Toll-like receptor 4. J Endotoxin Res 2004; 10:439–444 [View Article]
    [Google Scholar]
  132. Robey M, O’Connell W, Cianciotto NP. Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun 2001; 69:4276–4286 [View Article]
    [Google Scholar]
  133. Pilione MR, Pishko EJ, Preston A, Maskell DJ, Harvill ET. PagP is required for resistance to antibody-mediated complement lysis during Bordetella bronchiseptica respiratory infection. Infect Immun 2004; 72:2837–2842 [View Article]
    [Google Scholar]
  134. Ernst RK, Moskowitz SM, Emerson JC, Kraig GM, Adams KN et al. Unique lipid a modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J Infect Dis 2007; 196:1088–1092
    [Google Scholar]
  135. Thaipisuttikul I, Hittle LE, Chandra R, Zangari D, Dixon CL et al. A divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-specific lipid A. Mol Microbiol 2014; 91:158–174
    [Google Scholar]
  136. Hittle LE, Jones JW, Hajjar AM, Ernst RK, Preston A. Bordetella parapertussis PagP mediates the addition of two palmitates to the lipopolysaccharide lipid A. J Bacteriol 2015; 197:572–580 [View Article]
    [Google Scholar]
  137. Basu SS, White KA, Que NLS, Raetz CRH. A deacylase in Rhizobium leguminosarum membranes that cleaves the 3-O-linked beta-hydroxymyristoyl moiety of lipid A precursors. Journal of Biological Chemistry 1999; 274:11150–11158 [View Article] [PubMed]
    [Google Scholar]
  138. Ernst RK, Adams KN, Moskowitz SM, Kraig GM, Kawasaki K et al. The Pseudomonas aeruginosa lipid A deacylase: selection for expression and loss within the cystic fibrosis airway. J Bacteriol 2006; 188:191–201 [View Article]
    [Google Scholar]
  139. Kawasaki K, Ernst RK, Miller SI. Inhibition of Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation by aminoarabinose membrane modification. J Bacteriol 2005; 187:2448–2457 [View Article]
    [Google Scholar]
  140. Manabe T, Kawasaki K. Extracellular Loops of Lipid A 3-O-Deacylase PagL Are Involved in Recognition of Aminoarabinose-Based Membrane Modifications in Salmonella enterica Serovar Typhimurium. J Bacteriol 2008; 190:5597–5606 [View Article] [PubMed]
    [Google Scholar]
  141. Rutten L, Geurtsen J, Lambert W, Smolenaers JJM, Bonvin AM et al. Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2006; 103:7071–7076 [View Article] [PubMed]
    [Google Scholar]
  142. Geurtsen J, Steeghs L, Hove JT, van der Ley P, Tommassen J. Dissemination of lipid A deacylases (pagL) among gram-negative bacteria: identification of active-site histidine and serine residues. J Biol Chem 2005; 280:8248–8259 [View Article] [PubMed]
    [Google Scholar]
  143. Kawano M, Manabe T, Kawasaki K. Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation enhances its intracellular growth within macrophages. FEBS Lett 2010; 584:207–212 [View Article] [PubMed]
    [Google Scholar]
  144. Reinés M, Llobet E, Dahlström KM, Pérez-Gutiérrez C, Llompart CM et al. Deciphering the Acylation Pattern of Yersinia enterocolitica Lipid A. PLoS Pathog 2012; 8:e1002978 [View Article]
    [Google Scholar]
  145. Rutten L, Mannie J-PBA, Stead CM, Raetz CRH, Reynolds CM et al. Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium. Proc Natl Acad Sci U S A 2009; 106:1960–1964 [View Article] [PubMed]
    [Google Scholar]
  146. Sforza S, Silipo A, Molinaro A, Marchelli R, Parrilli M et al. Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. J Mass Spectrom 2004; 39:378–383 [View Article] [PubMed]
    [Google Scholar]
  147. Kulshin VA, Zähringer U, Lindner B, Jäger KE, Dmitriev BA et al. Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem 1991; 198:697–704 [View Article] [PubMed]
    [Google Scholar]
  148. MacArthur I, Jones JW, Goodlett DR, Ernst RK, Preston A. Role of pagL and lpxO in Bordetella bronchiseptica lipid A biosynthesis. J Bacteriol 2011; 193:4726–4735 [View Article] [PubMed]
    [Google Scholar]
  149. Zähringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A et al. The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 1995; 392:113–139 [PubMed]
    [Google Scholar]
  150. Gibbons HS, Lin S, Cotter RJ, Raetz CR. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, A new Fe2+/alpha-ketoglutarate-dependent dioxygenase homologue. J Biol Chem 2000; 275:32940–32949 [View Article] [PubMed]
    [Google Scholar]
  151. Gibbons HS, Reynolds CM, Guan Z, Raetz CRH. An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 2008; 47:2814–2825 [View Article] [PubMed]
    [Google Scholar]
  152. González-Silva N, López-Lara IM, Reyes-Lamothe R, Taylor AM, Sumpton D et al. The dioxygenase-encoding olsD gene from Burkholderia cenocepacia causes the hydroxylation of the amide-linked fatty acyl moiety of ornithine-containing membrane lipids. Biochemistry 2011; 50:6396–6408 [View Article] [PubMed]
    [Google Scholar]
  153. Bartholomew TL, Kidd TJ, Sá Pessoa J, Conde Álvarez R, Bengoechea JA. 2-Hydroxylation of Acinetobacter baumannii Lipid A Contributes to Virulence. Infect Immun 2019; 87:e00066-19 [View Article] [PubMed]
    [Google Scholar]
  154. Mills G, Dumigan A, Kidd T, Hobley L, Bengoechea JA. Identification and characterization of two Klebsiella pneumoniae lpxLlipid A Late acyltransferases and their role in virulence. Infect Immun 2017; 85:e00068-17 [View Article] [PubMed]
    [Google Scholar]
  155. Lo Sciuto A, Cervoni M, Stefanelli R, Spinnato MC, Di Giamberardino A et al. Genetic basis and physiological effects of Lipid A hydroxylation in Pseudomonas aeruginosa PAO1. Pathogens 2019; 8:E291 [View Article] [PubMed]
    [Google Scholar]
  156. Norris MH, Somprasong N, Schweizer HP, Tuanyok A, Whiteley M. Lipid A remodeling Is a pathoadaptive mechanism that impacts lipopolysaccharide recognition and intracellular survival of Burkholderia pseudomallei. Infect Immun 2018; 86:10 [View Article]
    [Google Scholar]
  157. Llobet E, Martínez-Moliner V, Moranta D, Dahlström KM, Regueiro V et al. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc Natl Acad Sci U S A 2015; 112:E6369–78 [View Article] [PubMed]
    [Google Scholar]
  158. Hankins JV, Madsen JA, Giles DK, Childers BM, Klose KE et al. Elucidation of A novel Vibrio cholerae lipid A secondary hydroxy-acyltransferase and its role in innate immune recognition. Mol Microbiol 2011; 81:1313–1329 [View Article] [PubMed]
    [Google Scholar]
  159. Mushtaq S, Reynolds R, Gilmore MC, Esho O, Adkin R et al. Inherent colistin resistance in genogroups of the Enterobacter cloacae complex: epidemiological, genetic and biochemical analysis from the BSAC Resistance Surveillance Programme. J Antimicrob Chemother 2020; 75:2452–2461 [View Article] [PubMed]
    [Google Scholar]
  160. Augusto LA, Bourgeois-Nicolaos N, Breton A, Barreault S, Alonso EH et al. Presence of 2-hydroxymyristate on endotoxins is associated with death in neonates with Enterobacter cloacae complex septic shock. iScience 2021; 24:102916 [View Article] [PubMed]
    [Google Scholar]
  161. De Soyza A, Ellis CD, Khan CMA, Corris PA, Demarco de Hormaeche R. Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med 2004; 170:70–77 [View Article] [PubMed]
    [Google Scholar]
  162. Stead C, Tran A, Ferguson D Jr, McGrath S, Cotter R et al. A novel 3-deoxy-D-manno-octulosonic acid (Kdo) hydrolase that removes the outer Kdo sugar of Helicobacter pylori lipopolysaccharide. J Bacteriol 2005; 187:3374–3383 [View Article] [PubMed]
    [Google Scholar]
  163. Stead CM, Zhao J, Raetz CRH, Trent MS. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface. Mol Microbiol 2010; 78:837–852 [View Article] [PubMed]
    [Google Scholar]
  164. Zhao J, Raetz CRH. A two-component Kdo hydrolase in the inner membrane of Francisella novicida. Mol Microbiol 2010; 78:820–836 [View Article] [PubMed]
    [Google Scholar]
  165. Reynolds CM, Kalb SR, Cotter RJ, Raetz CRH. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem 2005; 280:21202–21211 [View Article] [PubMed]
    [Google Scholar]
  166. Cox AD, Wright JC, Li J, Hood DW, Moxon ER et al. Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of A family of transferases that add phosphoethanolamine to lipopolysaccharide. J Bacteriol 2003; 185:3270–3277 [View Article]
    [Google Scholar]
  167. O'Connor ET, Piekarowicz A, Swanson KV, Griffiss JM, Stein DC. Biochemical analysis of Lpt3, a protein responsible for phosphoethanolamine addition to lipooligosaccharide of pathogenic Neisseria. J Bacteriol 2006; 188:31039–1048
    [Google Scholar]
  168. Wright JC, Hood DW, Randle GA, Makepeace K, Cox AD et al. lpt6, a gene required for addition of phosphoethanolamine to inner-core lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae. J Bacteriol 2004; 186:6970–6982 [View Article]
    [Google Scholar]
  169. Brabetz W, Müller-Loennies S, Brade H. 3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase (WaaA) and kdo kinase (KdkA) of Haemophilus influenzae are both required to complement a waaA knockout mutation of Escherichia coli. J Biol Chem 2000; 275:34954–34962 [View Article]
    [Google Scholar]
  170. Harper M, Boyce JD, Cox AD, St Michael F, Wilkie IW et al. Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases. Infect Immun 2007; 75:3885–3893 [View Article]
    [Google Scholar]
  171. Harper M, Cox AD, St Michael F, Ford M, Wilkie IW et al. Natural selection in the chicken host identifies 3-deoxy-D-manno-octulosonic acid kinase residues essential for phosphorylation of Pasteurella multocida lipopolysaccharide. Infect Immun 2010; 78:3669–3677 [View Article]
    [Google Scholar]
  172. Krupa A, Srinivasan N. Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases. Protein Sci 2002; 11:1580–1584 [View Article]
    [Google Scholar]
  173. Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C. Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. Journal of Biological Chemistry 1998; 273:26310–26316 [View Article]
    [Google Scholar]
  174. Yethon JA, Whitfield C. Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability. J Biol Chem 2001; 276:5498–5504 [View Article]
    [Google Scholar]
  175. Kooistra O, Bedoux G, Brecker L, Lindner B, Sánchez Carballo P et al. Structure of a highly phosphorylated lipopolysaccharide core in the Delta algC mutants derived from Pseudomonas aeruginosa wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Carbohydr Res 2003; 338:2667–2677 [View Article]
    [Google Scholar]
  176. Bystrova OV, Shashkov AS, Kocharova NA, Knirel YA, Lindner B et al. Structural studies on the core and the O-polysaccharide repeating unit of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide. Eur J Biochem 2002; 269:2194–2203 [View Article] [PubMed]
    [Google Scholar]
  177. Zhao X, Lam JS. WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J Biol Chem 2002; 277:4722–4730 [View Article] [PubMed]
    [Google Scholar]
  178. Walsh AG, Matewish MJ, Burrows LL, Monteiro MA, Perry MB et al. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol Microbiol 2000; 35:718–727 [View Article] [PubMed]
    [Google Scholar]
  179. Delucia AM, Six DA, Caughlan RE, Gee P, Hunt I et al. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1. mBio 2011; 2:e00142-11 [View Article] [PubMed]
    [Google Scholar]
  180. Yethon JA, Vinogradov E, Perry MB, Whitfield C. Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J Bacteriol 2000; 182:5620–5623 [View Article] [PubMed]
    [Google Scholar]
  181. Yethon JA, Whitfield C. Lipopolysaccharide as a target for the development of novel therapeutics in gram-negative bacteria. Curr Drug Targets Infect Disord 2001; 1:91–106 [View Article] [PubMed]
    [Google Scholar]
  182. Kanjilal-Kolar S, Basu SS, Kanipes MI, Guan Z, Garrett TA et al. Expression cloning of three Rhizobium leguminosarum lipopolysaccharide core galacturonosyltransferases. J Biol Chem 2006; 281:12865–12878 [View Article] [PubMed]
    [Google Scholar]
  183. Kanjilal-Kolar S, Raetz CRH. Dodecaprenyl phosphate-galacturonic acid as a donor substrate for lipopolysaccharide core glycosylation in Rhizobium leguminosarum. J Biol Chem 2006; 281:12879–12887 [View Article] [PubMed]
    [Google Scholar]
  184. Naito T, Mulet C, De Castro C, Molinaro A, Saffarian A et al. Lipopolysaccharide from crypt-specific core microbiota modulates the colonic epithelial proliferation-to-differentiation balance. mBio 2017; 8:e01680-17 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001159
Loading
/content/journal/micro/10.1099/mic.0.001159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error