1887

Abstract

Mobile genetic elements (MGEs) are one of the main vectors for the spread of antimicrobial resistance (AMR) across bacteria, due to their ability to move horizontally between bacterial lineages. Horizontal transmission of AMR can increase AMR prevalence at multiple scales, from increasing the prevalence of infections by resistant bacteria to pathogen epidemics and worldwide spread of AMR across species. Among MGEs, conjugative plasmids are the main contributors to the spread of AMR. This review discusses the selective pressures acting on MGEs and their hosts to promote or limit the horizontal transmission of MGEs, the mechanisms by which transmission rates can evolve, and their implications for limiting the spread of AMR, with a focus on AMR plasmids.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001214
2022-07-18
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/7/mic001214.html?itemId=/content/journal/micro/10.1099/mic.0.001214&mimeType=html&fmt=ahah

References

  1. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations; 2016
  2. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399:629–655 [View Article] [PubMed]
    [Google Scholar]
  3. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016; 7: [View Article] [PubMed]
    [Google Scholar]
  4. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010; 74:434–452 [View Article] [PubMed]
    [Google Scholar]
  5. Humphrey S, San Millán Á, Toll-Riera M, Connolly J, Flor-Duro A et al. Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nat Commun 2021; 12:5845 [View Article] [PubMed]
    [Google Scholar]
  6. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 2013; 499:219–222 [View Article] [PubMed]
    [Google Scholar]
  7. Humphrey S, Fillol-Salom A, Quiles-Puchalt N, Ibarra-Chávez R, Haag AF et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun 2021; 12:6509 [View Article] [PubMed]
    [Google Scholar]
  8. Amábile-Cuevas CF, Chicurel ME. Bacterial plasmids and gene flux. Cell 1992; 70:189–199 [View Article] [PubMed]
    [Google Scholar]
  9. Kondo K, Kawano M, Sugai M, Castanheira M. Distribution of antimicrobial resistance and virulence genes within the prophage-associated regions in nosocomial pathogens. mSphere 2021; 6:e0045221 [View Article] [PubMed]
    [Google Scholar]
  10. Venturini C, Zingali T, Wyrsch ER, Bowring B, Iredell J et al. Diversity of P1 phage-like elements in multidrug resistant Escherichia coli. Sci Rep 2019; 9:18861 [View Article] [PubMed]
    [Google Scholar]
  11. Botelho J, Schulenburg H. The Role of Integrative and conjugative elements in antibiotic resistance evolution. Trends Microbiol 2021; 29:8–18 [View Article]
    [Google Scholar]
  12. Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C et al. The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource. Genome Med 2015; 7:97 [View Article]
    [Google Scholar]
  13. Datta N, Hughes VM. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 1983; 306:616–617 [View Article] [PubMed]
    [Google Scholar]
  14. Watanabe T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 1963; 27:87 [View Article]
    [Google Scholar]
  15. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 2009; 53:2227–2238 [View Article] [PubMed]
    [Google Scholar]
  16. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother 2009; 64 Suppl 1:i3–10 [View Article] [PubMed]
    [Google Scholar]
  17. Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat Commun 2020; 11:4379 [View Article] [PubMed]
    [Google Scholar]
  18. Baker KS, Dallman TJ, Field N, Childs T, Mitchell H et al. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nat Commun 2018; 9:1462 [View Article] [PubMed]
    [Google Scholar]
  19. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene blaKPC. Antimicrob Agents Chemother 2016; 60:3767–3778 [View Article] [PubMed]
    [Google Scholar]
  20. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep 2017; 7:15364 [View Article] [PubMed]
    [Google Scholar]
  21. Bethke JH, Davidovich A, Cheng L, Lopatkin AJ, Song W et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci Adv 2020; 6:eaax3173 [View Article] [PubMed]
    [Google Scholar]
  22. Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: A meta-analysis. Plasmid 2020; 108:102489 [View Article] [PubMed]
    [Google Scholar]
  23. Hülter NF, Wein T, Effe J, Garoña A, Dagan T. Intracellular Competitions Reveal Determinants of Plasmid Evolutionary Success. Front Microbiol 2020; 11:2062 [View Article] [PubMed]
    [Google Scholar]
  24. Sheppard RJ, Barraclough TG, Jansen VAA. The evolution of plasmid transfer rate in bacteria and its effect on plasmid persistence. Am Nat 2021; 198:473–488 [View Article] [PubMed]
    [Google Scholar]
  25. Levin BR, Lenski RE. Coevolution in bacteria and their viruses and plasmids. In Coevolution, (Futuyma and Slatkin), p 1983
    [Google Scholar]
  26. Turner PE, Cooper VS, Lenski RE. Tradeoff between horizontal and vertical modes of transmission in bacterial plasmids. Evolution 1998; 52:315–329 [View Article] [PubMed]
    [Google Scholar]
  27. Reinhard F, Miyazaki R, Pradervand N, van der Meer JR. Cell differentiation to “mating bodies” induced by an integrating and conjugative element in free-living bacteria. Curr Biol 2013; 23:255–259 [View Article] [PubMed]
    [Google Scholar]
  28. Zahrl D, Wagner M, Bischof K, Koraimann G. Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli. J Bacteriol 2006; 188:6611–6621 [View Article] [PubMed]
    [Google Scholar]
  29. Dimitriu T, Matthews AC, Buckling A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc Natl Acad Sci U S A 2021; 118:e2107818118 [View Article] [PubMed]
    [Google Scholar]
  30. Haft RJF, Mittler JE, Traxler B. Competition favours reduced cost of plasmids to host bacteria. ISME J 2009; 3:761–769 [View Article] [PubMed]
    [Google Scholar]
  31. Manchak J, Anthony KG, Frost LS. Mutational analysis of F-pilin reveals domains for pilus assembly, phage infection and DNA transfer. Mol Microbiol 2002; 43:195–205 [View Article] [PubMed]
    [Google Scholar]
  32. Ho BT, Basler M, Mekalanos JJ. Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 2013; 342:250–253 [View Article] [PubMed]
    [Google Scholar]
  33. Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology 1982; 85 (Pt 2):411–426 [View Article] [PubMed]
    [Google Scholar]
  34. Berngruber TW, Froissart R, Choisy M, Gandon S. Evolution of virulence in emerging epidemics. PLoS Pathog 2013; 9:e1003209 [View Article] [PubMed]
    [Google Scholar]
  35. Stewart FM, Levin BR. The population biology of bacterial viruses: why be temperate. Theor Popul Biol 1984; 26:93–117 [View Article] [PubMed]
    [Google Scholar]
  36. Bruce JB, Lion S, Buckling A, Westra ER, Gandon S. Regulation of prophage induction and lysogenization by phage communication systems. Curr Biol 2021; 31:5046–5051 [View Article]
    [Google Scholar]
  37. Banderas A, Carcano A, Sia E, Li S, Lindner AB. Ratiometric quorum sensing governs the trade-off between bacterial vertical and horizontal antibiotic resistance propagation. PLoS Biol 2020; 18:e3000814 [View Article] [PubMed]
    [Google Scholar]
  38. Dahlberg C, Chao L. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 2003; 165:1641–1649 [View Article] [PubMed]
    [Google Scholar]
  39. Dionisio F, Conceição IC, Marques ACR, Fernandes L, Gordo I. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 2005; 1:250–252 [View Article] [PubMed]
    [Google Scholar]
  40. Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol 2015; 25:2034–2039 [View Article] [PubMed]
    [Google Scholar]
  41. Porse A, Schønning K, Munck C, Sommer MOA. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial Hosts. Mol Biol Evol 2016; 33:2860–2873 [View Article] [PubMed]
    [Google Scholar]
  42. Jalasvuori M, Friman V-P, Nieminen A, Bamford JKH, Buckling A. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol Lett 2011; 7:902–905 [View Article] [PubMed]
    [Google Scholar]
  43. De Gelder L, Williams JJ, Ponciano JM, Sota M, Top EM. Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 2008; 178:2179–2190 [View Article] [PubMed]
    [Google Scholar]
  44. Kottara A, Hall JPJ, Harrison E, Brockhurst MA. Multi-host environments select for host-generalist conjugative plasmids. BMC Evol Biol 2016; 16:70 [View Article] [PubMed]
    [Google Scholar]
  45. Messenger SL, Molineux IJ, Bull JJ. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci 1999; 266:397–404 [View Article] [PubMed]
    [Google Scholar]
  46. Turner PE, Williams E, Okeke C, Cooper VS, Duffy S et al. Antibiotic resistance correlates with transmission in plasmid evolution. Evolution 2014; 68:3368–3380 [View Article] [PubMed]
    [Google Scholar]
  47. Frost LS, Koraimann G. Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol 2010; 5:1057–1071 [View Article] [PubMed]
    [Google Scholar]
  48. Refardt D, Rainey PB. Tuning a genetic switch: experimental evolution and natural variation of prophage induction. Evolution 2010; 64:1086–1097 [View Article] [PubMed]
    [Google Scholar]
  49. Aviv G, Rahav G, Gal-Mor O, Davies JE. Horizontal transfer of the Salmonella enterica serovar Infantis resistance and virulence plasmid pESI to the gut microbiota of warm-blooded hosts. mBio 2016; 7:e01395-16 [View Article]
    [Google Scholar]
  50. Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci U S A 2005; 102:12554–12559 [View Article] [PubMed]
    [Google Scholar]
  51. Singh PK, Ramachandran G, Ramos-Ruiz R, Peiró-Pastor R, Abia D et al. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 2013; 9:e1003892 [View Article] [PubMed]
    [Google Scholar]
  52. Dunny GM. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. Philos Trans R Soc Lond B Biol Sci 2007; 362:1185–1193 [View Article] [PubMed]
    [Google Scholar]
  53. van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P et al. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat Commun 2021; 12:2324 [View Article] [PubMed]
    [Google Scholar]
  54. Yi L, Durand R, Grenier F, Yang J, Yu K et al. PixR, a novel activator of conjugative transfer of IncX4 resistance plasmids, mitigates the fitness cost of mcr-1 carriage in Escherichia coli. mBio 2022; 13:e03209–21 [View Article] [PubMed]
    [Google Scholar]
  55. Beaber JW, Hochhut B, Waldor MK. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004; 427:72–74 [View Article] [PubMed]
    [Google Scholar]
  56. Liu G, Bogaj K, Bortolaia V, Olsen JE, Thomsen LE. Antibiotic-induced, increased conjugative transfer is common to diverse naturally occurring ESBL plasmids in Escherichia coli. Front Microbiol 2019; 10:2119 [View Article] [PubMed]
    [Google Scholar]
  57. Bañuelos-Vazquez LA, Torres Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 2017; 91:82–89 [View Article] [PubMed]
    [Google Scholar]
  58. Waters JL, Salyers AA. Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. mBio 2013; 4:e00569–13 [View Article] [PubMed]
    [Google Scholar]
  59. Lopatkin AJ, Huang S, Smith RP, Srimani JK, Sysoeva TA et al. Antibiotics as a selective driver for conjugation dynamics. Nat Microbiol 2016; 1:16044 [View Article] [PubMed]
    [Google Scholar]
  60. Kohler V, Keller W, Grohmann E. Regulation of gram-positive conjugation. Front Microbiol 2019; 10:1134 [View Article] [PubMed]
    [Google Scholar]
  61. Yoshioka Y, Ohtsubo H, Ohtsubo E. Repressor gene finO in plasmids R100 and F: constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. J Bacteriol 1987; 169:619–623 [View Article] [PubMed]
    [Google Scholar]
  62. Meynell E, Datta N. Mutant drug resistant factors of high transmissibility. Nature 1967; 214:885–887 [View Article] [PubMed]
    [Google Scholar]
  63. Potron A, Poirel L, Nordmann P. Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother 2014; 58:467–471 [View Article] [PubMed]
    [Google Scholar]
  64. Fernandez-Lopez R, Del Campo I, Revilla C, Cuevas A, de la Cruz F et al. Negative feedback and transcriptional overshooting in a regulatory network for horizontal gene transfer. PLoS Genet 2014; 10:e1004171 [View Article]
    [Google Scholar]
  65. Lundquist PD, Levin BR. Transitory derepression and the maintenance of conjugative plasmids. Genetics 1986; 113:483–497 [View Article] [PubMed]
    [Google Scholar]
  66. Muesing M, Tamm J, Shepard HM, Polisky B. A single base-pair alteration is responsible for the DNA overproduction phenotype of a plasmid copy-number mutant. Cell 1981; 24:235–242 [View Article] [PubMed]
    [Google Scholar]
  67. Persson C, Wagner EG, Nordström K. Control of replication of plasmid R1: structures and sequences of the antisense RNA, CopA, required for its binding to the target RNA, CopT. EMBO J 1990; 9:3767–3775 [View Article] [PubMed]
    [Google Scholar]
  68. Santos-Lopez A, Bernabe-Balas C, Ares-Arroyo M, Ortega-Huedo R, Hoefer A et al. A naturally occurring SNP in plasmid pB1000 produces a reversible increase in antibiotic resistance. Antimicrob Agents Chemother 2016; 61:e01735–16 [View Article]
    [Google Scholar]
  69. Haugan K, Karunakaran P, Tøndervik A, Valla S. The host range of RK2 minimal replicon copy-up mutants is limited by species-specific differences in the maximum tolerable copy number. Plasmid 1995; 33:27–39 [View Article] [PubMed]
    [Google Scholar]
  70. Yang J, Wang H-H, Lu Y, Yi L-X, Deng Y et al. A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids. Nucleic Acids Res 2021; 49:3981–3996 [View Article] [PubMed]
    [Google Scholar]
  71. Lorenzo-Díaz F, Fernández-López C, Lurz R, Bravo A, Espinosa M. Crosstalk between vertical and horizontal gene transfer: plasmid replication control by a conjugative relaxase. Nucleic Acids Res 2017; 45:7774–7785 [View Article] [PubMed]
    [Google Scholar]
  72. Tran F, Boedicker JQ. Genetic cargo and bacterial species set the rate of vesicle-mediated horizontal gene transfer. Sci Rep 2017; 7:8813 [View Article] [PubMed]
    [Google Scholar]
  73. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012; 65:183–195 [View Article] [PubMed]
    [Google Scholar]
  74. Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001; 412:442–445 [View Article] [PubMed]
    [Google Scholar]
  75. Reisner A, Höller BM, Molin S, Zechner EL. Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 2006; 188:3582–3588 [View Article] [PubMed]
    [Google Scholar]
  76. Madsen JS, Riber L, Kot W, Basfeld A, Burmølle M et al. Type 3 fimbriae encoded on plasmids are expressed from a unique promoter without affecting host motility, facilitating an exceptional phenotype that enhances conjugal plasmid transfer. PLoS ONE 2016; 11:e0162390 [View Article]
    [Google Scholar]
  77. Luo H, Wan K, Wang HH. High-frequency conjugation system facilitates biofilm formation and pAMbeta1 transmission by Lactococcus lactis. Appl Environ Microbiol 2005; 71:2970–2978 [View Article] [PubMed]
    [Google Scholar]
  78. Di Venanzio G, Moon KH, Weber BS, Lopez J, Ly PM et al. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc Natl Acad Sci U S A 2019; 116:1378–1383 [View Article] [PubMed]
    [Google Scholar]
  79. Dimitriu T, Marchant L, Buckling A, Raymond B. Bacteria from natural populations transfer plasmids mostly towards their kin. Proc Biol Sci 2019; 286:20191110 [View Article] [PubMed]
    [Google Scholar]
  80. Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F. Plasmids spread very fast in heterogeneous bacterial communities. Genetics 2002; 162:1525–1532 [View Article] [PubMed]
    [Google Scholar]
  81. Benz F, Huisman JS, Bakkeren E, Herter JA, Stadler T et al. Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. ISME J 2021; 15:862–878 [View Article] [PubMed]
    [Google Scholar]
  82. Moriguchi K, Zoolkefli FIRM, Abe M, Kiyokawa K, Yamamoto S et al. Targeting antibiotic resistance genes is a better approach to block acquisition of antibiotic resistance than blocking conjugal transfer by recipient cells: a genome-wide screening in Escherichia coli. Front Microbiol 2019; 10:2939 [View Article] [PubMed]
    [Google Scholar]
  83. Pérez-Mendoza D, de la Cruz F. Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any?. BMC Genomics 2009; 10:71 [View Article] [PubMed]
    [Google Scholar]
  84. Dimitriu T, Szczelkun MD, Westra ER. Evolutionary ecology and interplay of prokaryotic innate and adaptive immune systems. Curr Biol 2020; 30:R1189–R1202 [View Article] [PubMed]
    [Google Scholar]
  85. Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids?. Plasmid 2008; 60:1–18 [View Article]
    [Google Scholar]
  86. Price VJ, Huo W, Sharifi A, Palmer KL. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis. mSphere 2016; 1:e00064-16 [View Article] [PubMed]
    [Google Scholar]
  87. Roer L, Aarestrup FM, Hasman H. The EcoKI type I restriction-modification system in Escherichia coli affects but is not an absolute barrier for conjugation. J Bacteriol 2015; 197:337–342 [View Article] [PubMed]
    [Google Scholar]
  88. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322:1843–1845 [View Article] [PubMed]
    [Google Scholar]
  89. Price VJ, McBride SW, Hullahalli K, Chatterjee A, Duerkop BA et al. Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the murine intestine. mSphere 2019; 4:11 [View Article] [PubMed]
    [Google Scholar]
  90. Getino M, de la Cruz F, Baquero F, Bouza E, Gutiérrez-Fuentes JA. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol Spectr 2018; 6:MTBP–0015 [View Article] [PubMed]
    [Google Scholar]
  91. Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L et al. Type IV CRISPR-cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2019; 13 [View Article]
    [Google Scholar]
  92. Knight GM, Budd EL, Lindsay JA. Large mobile genetic elements carrying resistance genes that do not confer a fitness burden in healthcare-associated meticillin-resistant Staphylococcus aureus. Microbiology 2013; 159:1661–1672 [View Article] [PubMed]
    [Google Scholar]
  93. Levin BR. Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet 2010; 6:e1001171 [View Article] [PubMed]
    [Google Scholar]
  94. Jiang W, Maniv I, Arain F, Wang Y, Levin BR et al. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 2013; 9:e1003844 [View Article] [PubMed]
    [Google Scholar]
  95. Korona R., Levin B.R. 1993; Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47:556–575
    [Google Scholar]
  96. Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov KV et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 2017; 8:e01397-17 [View Article] [PubMed]
    [Google Scholar]
  97. Forns N, Baños RC, Balsalobre C, Juárez A, Madrid C. Temperature-dependent conjugative transfer of R27: role of chromosome- and plasmid-encoded Hha and H-NS proteins. J Bacteriol 2005; 187:3950–3959 [View Article] [PubMed]
    [Google Scholar]
  98. Strohmaier H, Noiges R, Kotschan S, Sawers G, Högenauer G et al. Signal transduction and bacterial conjugation: characterization of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. J Mol Biol 1998; 277:309–316 [View Article] [PubMed]
    [Google Scholar]
  99. Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 2019; 102:29–36 [View Article] [PubMed]
    [Google Scholar]
  100. Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid 2017; 93:6–16 [View Article]
    [Google Scholar]
  101. Dimitriu T, Misevic D, Lotton C, Brown SP, Lindner AB et al. Indirect fitness benefits enable the spread of host genes promoting costly transfer of beneficial plasmids. PLoS Biol 2016; 14:e1002478 [View Article] [PubMed]
    [Google Scholar]
  102. Nicoloff H, Andersson DI. Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes. J Antimicrob Chemother 2016; 71:100–110 [View Article] [PubMed]
    [Google Scholar]
  103. Dimitriu T, Misevic D, Capelle JB, Lindner AB, Brown SP et al. Selection of horizontal gene transfer through public good production. bioRxiv 2018 [View Article]
    [Google Scholar]
  104. Chilley PM, Wilkins BM. Distribution of the ardA family of antirestriction genes on conjugative plasmids. Microbiology 1995; 141 (Pt 9):2157–2164 [View Article] [PubMed]
    [Google Scholar]
  105. Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP et al. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol 2020; 5:620–629 [View Article] [PubMed]
    [Google Scholar]
  106. Roy D, Huguet KT, Grenier F, Burrus V. IncC conjugative plasmids and SXT/R391 elements repair double-strand breaks caused by CRISPR-Cas during conjugation. Nucleic Acids Res 2020; 48:8815–8827 [View Article] [PubMed]
    [Google Scholar]
  107. Pursey E, Dimitriu T, Paganelli FL, Westra ER, van Houte S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 2021; 377:20200464 [View Article]
    [Google Scholar]
  108. Shehreen S, Chyou T-Y, Fineran PC, Brown CM. Genome-wide correlation analysis suggests different roles of CRISPR-Cas systems in the acquisition of antibiotic resistance genes in diverse species. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180384 [View Article] [PubMed]
    [Google Scholar]
  109. Corvaglia AR, François P, Hernandez D, Perron K, Linder P et al. A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 2010; 107:11954–11958 [View Article] [PubMed]
    [Google Scholar]
  110. Li D, Li P, Peng M, Zhao X, Jiang X et al. Transmission barrier of the blaKPC plasmid mediated by type I restriction-modification systems in Escherichia coli. J Antimicrob Chemother 2022; 77:952–956 [View Article] [PubMed]
    [Google Scholar]
  111. Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658–5663 [View Article] [PubMed]
    [Google Scholar]
  112. Stewart FM, Levin BR. The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 1977; 87:209–228 [View Article] [PubMed]
    [Google Scholar]
  113. Simonsen L. The existence conditions for bacterial plasmids: theory and reality. Microb Ecol 1991; 22:187–205 [View Article]
    [Google Scholar]
  114. Lili LN, Britton NF, Feil EJ. The persistence of parasitic plasmids. Genetics 2007; 177:399–405 [View Article] [PubMed]
    [Google Scholar]
  115. Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689 [View Article] [PubMed]
    [Google Scholar]
  116. Bahl MI, Hansen LH, Licht TR, Sørensen SJ. Conjugative transfer facilitates stable maintenance of IncP-1 plasmid pKJK5 in Escherichia coli cells colonizing the gastrointestinal tract of the germfree rat. Appl Environ Microbiol 2007; 73:341–343 [View Article] [PubMed]
    [Google Scholar]
  117. Hardiman CA, Weingarten RA, Conlan S, Khil P, Dekker JP et al. Horizontal transfer of carbapenemase-encoding plasmids and comparison with hospital epidemiology data. Antimicrob Agents Chemother 2016; 60:4910–4919 [View Article] [PubMed]
    [Google Scholar]
  118. van Hal SJ, Wiklendt A, Espedido B, Ginn A, Iredell JR. Immediate appearance of plasmid-mediated resistance to multiple antibiotics upon antibiotic selection: an argument for systematic resistance epidemiology. J Clin Microbiol 2009; 47:2325–2327 [View Article] [PubMed]
    [Google Scholar]
  119. Sidjabat HE, Heney C, George NM, Nimmo GR, Paterson DL. Interspecies transfer of blaIMP-4 in a patient with prolonged colonization by IMP-4-producing Enterobacteriaceae. J Clin Microbiol 2014; 52:3816–3818 [View Article]
    [Google Scholar]
  120. Gumpert H, Kubicek-Sutherland JZ, Porse A, Karami N, Munck C et al. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment. Front Microbiol 2017; 8:1852 [View Article] [PubMed]
    [Google Scholar]
  121. León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol 2021; 6:606–616 [View Article] [PubMed]
    [Google Scholar]
  122. Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci U S A 2016; 113:8260–8265 [View Article] [PubMed]
    [Google Scholar]
  123. Alonso-Del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M et al. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat Commun 2021; 12:2653 [View Article] [PubMed]
    [Google Scholar]
  124. Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 2011; 55:3649–3660 [View Article] [PubMed]
    [Google Scholar]
  125. Getino M, Sanabria-Ríos DJ, Fernández-López R, Campos-Gómez J, Sánchez-López JM et al. Synthetic fatty acids prevent plasmid-mediated horizontal gene transfer. mBio 2015; 6:e01032–15 [View Article] [PubMed]
    [Google Scholar]
  126. Palencia-Gándara C, Getino M, Moyano G, Redondo S, Fernández-López R et al. Conjugation inhibitors effectively prevent plasmid transmission in natural environments. mBio 2021; 12:e0127721 [View Article] [PubMed]
    [Google Scholar]
  127. Ojala V, Laitalainen J, Jalasvuori M. Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol Appl 2013; 6:925–932 [View Article] [PubMed]
    [Google Scholar]
  128. Liu G, Olsen JE, Thomsen LE. Identification of genes essential for antibiotic-induced up-regulation of plasmid-transfer-genes in cephalosporin esistant Escherichia coli. Front Microbiol 2019; 10:2203 [View Article] [PubMed]
    [Google Scholar]
  129. Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158 [View Article]
    [Google Scholar]
  130. Liu P, Wu Z, Xue H, Zhao X. Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses. Nucleic Acids Res 2017; 45:3944–3952 [View Article] [PubMed]
    [Google Scholar]
  131. Showsh SA, Andrews RE. Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid 1992; 28:213–224 [View Article]
    [Google Scholar]
  132. Beabout K, Hammerstrom TG, Wang TT, Bhatty M, Christie PJ et al. Rampant parasexuality evolves in a hospital pathogen during antibiotic selection. Mol Biol Evol 2015; 32:2585–2597 [View Article] [PubMed]
    [Google Scholar]
  133. Hall JPJ, Williams D, Paterson S, Harrison E, Brockhurst MA. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat Ecol Evol 2017; 1:1348–1353 [View Article] [PubMed]
    [Google Scholar]
  134. Gillings MR, Stokes HW. Are humans increasing bacterial evolvability?. Trends Ecol Evol 2012; 27:346–352 [View Article] [PubMed]
    [Google Scholar]
  135. MacLean RC, San Millan A. The evolution of antibiotic resistance. Science 2019; 365:1082–1083 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001214
Loading
/content/journal/micro/10.1099/mic.0.001214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error