1887

Abstract

The bacterial predator is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating ‘two-cell’ system.

Funding
This study was supported by the:
  • Wellcome Trust (Award 209437/Z/17/Z)
    • Principle Award Recipient: AndrewLovering
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001380
2023-08-03
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/8/mic001380.html?itemId=/content/journal/micro/10.1099/mic.0.001380&mimeType=html&fmt=ahah

References

  1. Stolp H, Petzold H. Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. J Phytopathol 1962; 45:364–390 [View Article]
    [Google Scholar]
  2. Monnappa AK, Dwidar M, Seo JK, Hur J-H, Mitchell RJ. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep 2014; 4:3811 [View Article] [PubMed]
    [Google Scholar]
  3. Lambert C, Hobley L, Chang C-Y, Fenton A, Capeness M et al. A predatory patchwork: membrane and surface structures of Bdellovibrio bacteriovorus. Adv Microb Physiol 2009; 54:313–361 [View Article] [PubMed]
    [Google Scholar]
  4. Jashnsaz H, Al Juboori M, Weistuch C, Miller N, Nguyen T et al. Hydrodynamic hunters. Biophys J 2017; 112:1282–1289 [View Article] [PubMed]
    [Google Scholar]
  5. LaMarre AG, Straley SC, Conti SF. Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol 1977; 131:201–207 [View Article] [PubMed]
    [Google Scholar]
  6. Lambert C, Smith MCM, Sockett RE. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 2003; 5:127–132 [View Article] [PubMed]
    [Google Scholar]
  7. Borgnia MJ, Subramaniam S, Milne JLS. Three-dimensional imaging of the highly bent architecture of Bdellovibrio bacteriovorus by using cryo-electron tomography. J Bacteriol 2008; 190:2588–2596 [View Article] [PubMed]
    [Google Scholar]
  8. Lerner TR, Lovering AL, Bui NK, Uchida K, Aizawa S-I et al. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog 2012; 8:e1002524 [View Article]
    [Google Scholar]
  9. Fenton AK, Kanna M, Woods RD, Aizawa S-I, Sockett RE. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol 2010; 192:6329–6335 [View Article] [PubMed]
    [Google Scholar]
  10. Cotter TW, Thomashow MF. Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol 1992; 174:6018–6024 [View Article]
    [Google Scholar]
  11. Thomashow MF, Rittenberg SC. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J Bacteriol 1978; 135:998–1007 [View Article] [PubMed]
    [Google Scholar]
  12. Harding CJ, Huwiler SG, Somers H, Lambert C, Ray LJ et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat Commun 2020; 11:4817 [View Article] [PubMed]
    [Google Scholar]
  13. Thomashow MF, Rittenberg SC. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: attachment of long-chain fatty acids to Escherichia coli peptidoglycan. J Bacteriol 1978; 135:1015–1023 [View Article]
    [Google Scholar]
  14. Cover WH, Martinez RJ, Rittenberg SC. Permeability of the boundary layers of Bdellovibrio bacteriovorus 109J and its bdelloplasts to small hydrophilic molecules. J Bacteriol 1984; 157:385–390 [View Article]
    [Google Scholar]
  15. Barel G, Sirota A, Volpin H, Jurkevitch E. Fate of predator and prey proteins during growth of Bdellovibrio bacteriovorus on Escherichia coli and Pseudomonas syringae prey. J Bacteriol 2005; 187:329–335 [View Article] [PubMed]
    [Google Scholar]
  16. Burger A, Drews G, Ladwig R. Wirtskreis und Infektionscyclus eines neu isolierten Bdellovibrio bacteriovorus-Stammes. Archiv Mikrobiol 1968; 61:261–279 [View Article]
    [Google Scholar]
  17. Koval SF, Hynes SH, Flannagan RS, Pasternak Z, Davidov Y et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol 2013; 63:146–151 [View Article] [PubMed]
    [Google Scholar]
  18. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 2004; 303:689–692 [View Article] [PubMed]
    [Google Scholar]
  19. Lambert C, Chang C-Y, Capeness MJ, Sockett RE. The first bite--profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One 2010; 5:e8599 [View Article] [PubMed]
    [Google Scholar]
  20. Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One 2013; 8:e61850 [View Article] [PubMed]
    [Google Scholar]
  21. Medina AA, Shanks RM, Kadouri DE. Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J. BMC Microbiol 2008; 8:33 [View Article] [PubMed]
    [Google Scholar]
  22. Tudor JJ, Davis JJ, Panichella M, Zwolak A. Isolation of predation-deficient mutants of Bdellovibrio bacteriovorus by using transposon mutagenesis. Appl Environ Microbiol 2008; 74:5436–5443 [View Article]
    [Google Scholar]
  23. Duncan MC, Gillette RK, Maglasang MA, Corn EA, Tai AK et al. High-throughput analysis of gene function in the bacterial predator Bdellovibrio bacteriovorus. mBio 2019; 10:e01040-19 [View Article] [PubMed]
    [Google Scholar]
  24. Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN et al. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 2013; 7:756–769 [View Article] [PubMed]
    [Google Scholar]
  25. Seef S, Herrou J, de Boissier P, My L, Brasseur G et al. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria. Elife 2021; 10:e72409 [View Article] [PubMed]
    [Google Scholar]
  26. Luciano J, Agrebi R, Le Gall AV, Wartel M, Fiegna F et al. Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet 2011; 7:e1002268 [View Article] [PubMed]
    [Google Scholar]
  27. Lambina VA, Afinogenova AV, Romaĭ Penabad S, Konovalova SM, Pushkareva AP. Micavibrio admirandus gen. et sp. nov. Mikrobiologiia 1982; 51:114–117 [PubMed]
    [Google Scholar]
  28. Moreira D, Zivanovic Y, López-Archilla AI, Iniesto M, López-García P. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat Commun 2021; 12: [View Article]
    [Google Scholar]
  29. Shiratori T, Suzuki S, Kakizawa Y, Ishida K. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10: [View Article]
    [Google Scholar]
  30. Lambert C, Cadby IT, Till R, Bui NK, Lerner TR et al. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun 2015; 6:8884 [View Article] [PubMed]
    [Google Scholar]
  31. Lambert C, Lerner TR, Bui NK, Somers H, Aizawa S-I et al. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Sci Rep 2016; 6:26010 [View Article] [PubMed]
    [Google Scholar]
  32. Avidan O, Petrenko M, Becker R, Beck S, Linscheid M et al. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci Rep 2017; 7:1013 [View Article] [PubMed]
    [Google Scholar]
  33. Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol 2007; 189:4850–4859 [View Article] [PubMed]
    [Google Scholar]
  34. Mahmoud KK, Koval SF. Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio. Microbiology 2010; 156:1040–1051 [View Article] [PubMed]
    [Google Scholar]
  35. Milner DS, Till R, Cadby I, Lovering AL, Basford SM et al. Ras GTPase-like protein MglA, a controller of bacterial social-motility in myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet 2014; 10:e1004253 [View Article]
    [Google Scholar]
  36. Hobley L, Fung RKY, Lambert C, Harris MATS, Dabhi JM et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog 2012; 8:e1002493 [View Article] [PubMed]
    [Google Scholar]
  37. Lowry RC, Hallberg ZF, Till R, Simons TJ, Nottingham R et al. Production of 3’,3’-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility. PLoS Genet 2022; 18:e1010164 [View Article] [PubMed]
    [Google Scholar]
  38. Rotem O, Nesper J, Borovok I, Gorovits R, Kolot M et al. An extended cyclic Di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus. J Bacteriol 2016; 198:127–137 [View Article]
    [Google Scholar]
  39. Sathyamoorthy R, Kushmaro Y, Rotem O, Matan O, Kadouri DE et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J 2021; 15:109–123 [View Article] [PubMed]
    [Google Scholar]
  40. Cadby IT, Basford SM, Nottingham R, Meek R, Lowry R et al. Nucleotide signaling pathway convergence in a cAMP-sensing bacterial c-di-GMP phosphodiesterase. EMBO J 2019; 38:e100772 [View Article] [PubMed]
    [Google Scholar]
  41. Prehna G, Ramirez BE, Lovering AL. The lifestyle switch protein Bd0108 of Bdellovibrio bacteriovorus is an intrinsically disordered protein. PLoS One 2014; 9:e115390 [View Article] [PubMed]
    [Google Scholar]
  42. Banks EJ, Valdivia-Delgado M, Biboy J, Wilson A, Cadby IT et al. Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat Commun 2022; 13:1509 [View Article] [PubMed]
    [Google Scholar]
  43. Kuru E, Lambert C, Rittichier J, Till R, Ducret A et al. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat Microbiol 2017; 2:1648–1657 [View Article] [PubMed]
    [Google Scholar]
  44. Hocher A, Laursen SP, Radford P, Tyson J, Lambert C et al. Histone-organized chromatin in bacteria. Mol Biol 2023 [View Article]
    [Google Scholar]
  45. Hu Y, Deiss S, Joiner JD, Hartmann MD, Lupas AN et al. Atomic resolution structure of a DNA-binding histone protein from the bacterium Bdellovibrio bacteriovorus. Mol Biol 2023 [View Article]
    [Google Scholar]
  46. Fratamico PM, Cooke PH. Isolation of bdellovibrios that prey on Escherichia coli O157:H7 and Salmonella species and application for removal of prey from stainless steel surfaces. J Food Safety 1996; 16:161–173 [View Article]
    [Google Scholar]
  47. Saxon EB, Jackson RW, Bhumbra S, Smith T, Sockett RE. Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiol 2014; 14:163 [View Article]
    [Google Scholar]
  48. Atterbury RJ, Tyson J. Predatory bacteria as living antibiotics - where are we now?. Microbiology 2021; 167: [View Article] [PubMed]
    [Google Scholar]
  49. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 2011; 77:5794–5803 [View Article] [PubMed]
    [Google Scholar]
  50. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio 2016; 7:e01847-16 [View Article] [PubMed]
    [Google Scholar]
  51. Gupta S, Tang C, Tran M, Kadouri DE. Effect of predatory bacteria on human cell lines. PLoS One 2016; 11:e0161242 [View Article] [PubMed]
    [Google Scholar]
  52. Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in Zebrafish Larvae. Curr Biol 2016; 26:3343–3351 [View Article] [PubMed]
    [Google Scholar]
  53. Kadouri DE, To K, Shanks RMQ, Doi Y, Cloeckaert A. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS One 2013; 8:e63397 [View Article] [PubMed]
    [Google Scholar]
  54. Koval SF, Hynes SH. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol 1991; 173:2244–2249 [View Article]
    [Google Scholar]
  55. Mun W, Upatissa S, Lim S, Dwidar M, Mitchell RJ. Outer membrane porin F in E. coli is critical for effective predation by Bdellovibrio. Microbiol Spectr 2022; 10:e0309422 [View Article] [PubMed]
    [Google Scholar]
  56. Aharon E, Mookherjee A, Pérez-Montaño F, Mateus da Silva G, Sathyamoorthy R et al. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res Microbiol 2021; 172:103878 [View Article] [PubMed]
    [Google Scholar]
  57. Lambert C, Fenton AK, Hobley L, Sockett RE. Predatory Bdellovibrio bacteria use gliding motility to scout for prey on surfaces. J Bacteriol 2011; 193:3139–3141 [View Article] [PubMed]
    [Google Scholar]
  58. Wucher BR, Elsayed M, Adelman JS, Kadouri DE, Nadell CD. Bacterial predation transforms the landscape and community assembly of biofilms. Curr Biol 2021; 31:2643–2651 [View Article] [PubMed]
    [Google Scholar]
  59. Makowski Ł, Trojanowski D, Till R, Lambert C, Lowry R et al. Dynamics of chromosome replication and its relationship to predatory attack lifestyles in Bdellovibrio bacteriovorus. Appl Environ Microbiol 2019; 85:e00730-19 [View Article] [PubMed]
    [Google Scholar]
  60. Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R et al. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707–3720 [View Article] [PubMed]
    [Google Scholar]
  61. Pląskowska K, Makowski L, Strzałka A, Zakrzewska-Czerwińska J. Binary or non-binary fission. bioRxiv 2022 [View Article]
    [Google Scholar]
  62. Santin YG, Lamot T, van Raaphorst R, Kaljević J, Laloux G. Modulation of prey size reveals adaptability and robustness in the cell cycle of an intracellular predator. Curr Biol 2023; 33:2213–2222 [View Article]
    [Google Scholar]
  63. Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R et al. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707–3720 [View Article] [PubMed]
    [Google Scholar]
  64. Kaplan M, Chang Y-W, Oikonomou CM, Nicolas WJ, Jewett AI et al. Dynamic structural adaptations enable the endobiotic predation of Bdellovibrio bacteriovorus. Nature Microbiology 2023 [View Article]
    [Google Scholar]
  65. Rittenberg SC, Langley D. Utilization of nucleoside monophosphates per Se for intraperiplasmic growth of Bdellovibrio bacteriovorus. J Bacteriol 1975; 121:1137–1144 [View Article]
    [Google Scholar]
  66. Meek RW, Cadby IT, Moynihan PJ, Lovering AL. Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio. Nat Commun 2019; 10: [View Article]
    [Google Scholar]
  67. van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J et al. Fast and accurate protein structure search with Foldseek. Bioinformatics 2022 [View Article]
    [Google Scholar]
  68. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article] [PubMed]
    [Google Scholar]
  69. Dwidar M, Yokobayashi Y. Controlling Bdellovibrio bacteriovorus gene expression and predation using synthetic riboswitches. ACS Synth Biol 2017; 6:2035–2041 [View Article]
    [Google Scholar]
  70. Remy O, Lamot T, Santin Y, Kaljević J, de Pierpont C et al. An optimized workflow to measure bacterial predation in microplates. STAR Protoc 2022; 3:101104 [View Article] [PubMed]
    [Google Scholar]
  71. Wright TA, Jiang L, Park JJ, Anderson WA, Chen G et al. Second messengers and divergent HD-GYP phosphodiesterases regulate 3’,3’-cGAMP signaling. Mol Microbiol 2020; 113:222–236 [View Article] [PubMed]
    [Google Scholar]
  72. Lovering AL, Capeness MJ, Lambert C, Hobley L, Sockett RE et al. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. mBio 2011; 2:e00163–11 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001380
Loading
/content/journal/micro/10.1099/mic.0.001380
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error