1887

Abstract

is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted as an emerging pathogen harbouring virulence and resistance determinants.

Little information exists on virulence and resistance determinants in strains isolated from environmental, food, and clinical samples.

To determine the presence of resistance and virulence determinants and plasmid features in strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.

All strains tested showed resistance to β-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of , the resistance phenotype was only observed in 50 % of the strains; was the most prevalent BLEE gene (70 %), while the quinolone gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.

is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.

Funding
This study was supported by the:
  • Universidad de Sonora (Award USO413008356)
    • Principle Award Recipient: EdwinBarrios-Villa
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001457
2024-04-25
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/4/mic001457.html?itemId=/content/journal/micro/10.1099/mic.0.001457&mimeType=html&fmt=ahah

References

  1. Tamura K, Sakazaki R, Kosako Y, Yoshizaki E. Leclercia adecarboxylata Gen. Nov., Comb. Nov., formerly known as Escherichia adecarboxylata. Curr Microbiol 1986; 13:179–184 [View Article]
    [Google Scholar]
  2. Anuradha M. Leclercia adecarboxylata isolation: case reports and review. J Clin Diagn Res 2014; 8:DD03–DD04 [View Article] [PubMed]
    [Google Scholar]
  3. Temesgen Z, Toal DR, Cockerill III FR. Leclercia adecarboxylata infections: case report and review; 1997 https://academic.oup.com/cid/article/25/1/79/335530
  4. De Mauri A, Chiarinotti D, Andreoni S, Molinari GL, Conti N et al. Leclercia adecarboxylata and catheter-related bacteraemia: review of the literature and outcome with regard to catheters and patients. J Med Microbiol 2013; 62:1620–1623 [View Article] [PubMed]
    [Google Scholar]
  5. Li J, Park A, Fulmer BR, Garg T. Leclercia adecarboxylata urinary tract infection in a patient with bladder cancer and recurrent hematuria. Urol Case Rep 2021; 36:101579 [View Article] [PubMed]
    [Google Scholar]
  6. Kashani A, Chitsazan M, Che K, Garrison RC. Leclercia adecarboxylata bacteremia in a patient with ulcerative colitis. Case Rep Gastrointest Med 2014; 2014:1–4 [View Article] [PubMed]
    [Google Scholar]
  7. Broderick A, Lowe E, Xiao A, Ross R, Miller R. Leclercia adecarboxylata folliculitis in a healthy swimmer-an emerging aquatic pathogen?. JAAD Case Rep 2019; 5:706–708 [View Article] [PubMed]
    [Google Scholar]
  8. Dotis J, Kondou A, Karava V, Sotiriou G, Papadopoulou A et al. Leclercia adecarboxylata in peritoneal dialysis patients: a systematic review. Pediatr Rep 2023; 15:293–300 [View Article] [PubMed]
    [Google Scholar]
  9. Zapor M, McGann PT, Alao O, Stevenson L, Lesho E et al. Isolation of Leclercia adecarboxylata from an infected war wound in an immune competent patient. Mil Med 2013; 178:e390–e393 [View Article]
    [Google Scholar]
  10. Hurley EH, Cohen E, Katarincic J, Katarincic JA, Ohnmacht RK. Leclercia adecarboxylata infection in an immunocompetent child incidence, timing, and risk factors for secondary revision after primary revision of traumatic digit amputations view project Leclercia adecarboxylata infection in an immunocompetent child; 2015 https://www.researchgate.net/publication/281520787
  11. Kaushik M, Mittal A, Tirador K, Ibrahim H, Drake S. Leclercia adecarboxylata causing necrotizing fasciitis in an immunocompetent athlete injecting illicit testosterone supplements. Cureus 2020; 12:e11196 [View Article] [PubMed]
    [Google Scholar]
  12. Poirel L, Vuillemin X, Kieffer N, Mueller L, Descombes MC. Identification of FosA8, a plasmid-encoded fosfomycin resistance determinant from Escherichia coli, and its origin in Leclercia adecarboxylata; 2019 https://doi.org/10.1128/AAC
  13. Barrios-Villa E, Pacheco-Flores B, Lozano-Zaraín P, Del Campo-Ortega R, de Jesús Ascencio-Montiel I et al. Genomic insights of Leclercia adecarboxylata strains linked to an outbreak in public hospitals in Mexico. Genes Genomics 2023; 45:569–579 [View Article] [PubMed]
    [Google Scholar]
  14. Alosaimi RS, Muhmmed Kaaki M. Catheter-related ESBL-producing Leclercia adecarboxylata septicemia in hemodialysis patient: an emerging pathogen?. Case Rep Infect Dis 2020; 2020:1–3 [View Article] [PubMed]
    [Google Scholar]
  15. Garza-González E, Bocanegra-Ibarias P, Rodríguez-Noriega E, González-Díaz E, Silva-Sanchez J et al. Molecular investigation of an outbreak associated with total parenteral nutrition contaminated with NDM-producing Leclercia adecarboxylata. BMC Infect Dis 2021; 21: [View Article] [PubMed]
    [Google Scholar]
  16. Spiegelhauer MR, Andersen PF, Frandsen TH, Nordestgaard RLM, Andersen LP. Leclercia adecarboxylata: a case report and literature review of 74 cases demonstrating its pathogenicity in immunocompromised patients. Infect Dis 2019; 51:179–188 [View Article]
    [Google Scholar]
  17. Lee IPA, Eldakar OT, Gogarten JP, Andam CP. Bacterial cooperation through horizontal gene transfer. Trends Ecol Evol 2022; 37:223–232 [View Article]
    [Google Scholar]
  18. Hülter N, Ilhan J, Wein T, Kadibalban AS, Hammerschmidt K et al. An evolutionary perspective on plasmid lifestyle modes. In Current Opinion in Microbiology vol 38 Elsevier Ltd; 2017 pp 74–80 [View Article] [PubMed]
    [Google Scholar]
  19. San Millan A, MacLean RC. Fitness Costs of plasmids: a limit to plasmid transmission. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  20. Mnif B, Vimont S, Boyd A, Bourit E, Picard B et al. Molecular characterization of addiction systems of plasmids encoding extended-spectrum β-lactamases in Escherichia coli. J Antimicrob Chemother 2010; 65:1599–1603 [View Article] [PubMed]
    [Google Scholar]
  21. Kamruzzaman M, Iredell J. A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Sci Rep 2019; 9:9872 [View Article] [PubMed]
    [Google Scholar]
  22. Pacheco Pacheco BA. 2023 Diseño de una PCR Múltiplex para La Detección de Enterobacterales Como Método Diagnóstico
    [Google Scholar]
  23. Walker DI, McQuillan J, Taiwo M, Parks R, Stenton CA et al. A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters. Water Res 2017; 126:101–110 [View Article] [PubMed]
    [Google Scholar]
  24. Carreón León EA. Estudio molecular de la Resistencia Y Virulencia de Cepas de Esherichia coli Productoras de Β-Lactamasas de Espectro Extendido Aisladas de Vegetales Crudos; 2019
  25. Garza-Ramos U, Davila G, Gonzalez V, Alpuche-Aranda C, López-Collada VR et al. The blaSHV-5 gene is encoded in a compound transposon duplicated in tandem in Enterobacter cloacae. Clin Microbiol Infect 2009; 15:878–880 [View Article] [PubMed]
    [Google Scholar]
  26. Hong BK, Wang M, Park CH, Kim EC, Jacoby GA et al. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 2009; 53:3582–3584 [View Article] [PubMed]
    [Google Scholar]
  27. Ballesteros-Monrreal MG, Arenas-Hernández MMP, Barrios-Villa E, Juarez J, Álvarez-Ainza ML et al. Bacterial morphotypes as important trait for uropathogenic E. coli diagnostic; a virulence-phenotype-phylogeny study. Microorganisms 2021; 9:2381 [View Article] [PubMed]
    [Google Scholar]
  28. Yamane K, Wachino J-I, Suzuki S, Kimura K, Shibata N et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007; 51:3354–3360 [View Article] [PubMed]
    [Google Scholar]
  29. Wang A, Yang Y, Lu Q, Wang Y, Chen Y et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infect Dis 2008; 8:68 [View Article] [PubMed]
    [Google Scholar]
  30. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006; 50:3953–3955 [View Article] [PubMed]
    [Google Scholar]
  31. Barrios-Villa E, Cortés-Cortés G, Lozano-Zaraín P, Arenas-Hernández MM de la P, Martínez de la Peña CF et al. Adherent/invasive Escherichia coli (AIEC) isolates from asymptomatic people: new E. coli ST131 O25:H4/H30-Rx virotypes. Ann Clin Microbiol Antimicrob 2018; 17:42 [View Article] [PubMed]
    [Google Scholar]
  32. Clinical and Laboratory Standards Institute M100 Perfomance Standards for Antimicrobial Susceptibility testing CLSI; 2023
    [Google Scholar]
  33. Félix-Murray K. Caracterización Genotípica, Mediante ERIC-PCR, de Aislamientos Clínicos de Escherichia coli y Klebsiella pneumoniae Productoras de Beta-lactamasas de Espectro Extendido; 2018
  34. Heras J, Domínguez C, Mata E, Pascual V, Lozano C et al. GelJ-a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 2015; 16: [View Article] [PubMed]
    [Google Scholar]
  35. Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  36. AU -O’Toole GA. Microtiter dish biofilm formation assay. JoVE 2011e2437 [View Article]
    [Google Scholar]
  37. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  38. Zayet S, Lang S, Garnier P, Pierron A, Plantin J et al. Leclercia adecarboxylata as emerging pathogen in human infections: clinical features and antimicrobial susceptibility testing. Pathogens 2021; 10:1399 [View Article] [PubMed]
    [Google Scholar]
  39. Akinbami OR, Olofinsae S, Ayeni FA. Prevalence of extended spectrum beta lactamase and plasmid mediated quinolone resistant genes in strains of Klebsiella pneumonia, Morganella morganii, Leclercia adecarboxylata and Citrobacter freundii isolated from poultry in South Western Nigeria. PeerJ 2018; 2018:e5053 [View Article] [PubMed]
    [Google Scholar]
  40. Sano E, Fontana H, Esposito F, Cardoso B, Fuga B et al. Genomic analysis of fluoroquinolone-resistant Leclercia adecarboxylata carrying the ISKpn19-orf-qnrS1-ΔIS3-blaLAP-2 module in a synanthropic pigeon, Brazil. In Journal of Global Antimicrobial Resistance vol 33 Elsevier Ltd; 2023 pp 256–259 [View Article] [PubMed]
    [Google Scholar]
  41. García-Fulgueiras V, Seija V, Aguerrebere P, Cordeiro NF, Vignoli R. First report of a clinical isolate of Leclercia adecarboxylata harbouring multiple resistance genes in Uruguay and review of the literature. J Glob Antimicrob Resist 2014; 2:77–81 [View Article] [PubMed]
    [Google Scholar]
  42. Sng ECY, Goh KCM, Tan SH, Tan AL, Oh HML. Leclercia adecarboxylata bacteraemia: clinical features and antibiotic susceptibilities in 2 hospitals in Singapore. In Annals of the Academy of Medicine vol 50 Singapore: NLM (Medline); 2021 pp 643–645 [View Article] [PubMed]
    [Google Scholar]
  43. Gajdács M, Ábrók M, Lázár A, Terhes G, Burián K. Leclercia adecarboxylata as an emerging pathogen in human infections: A 13-year retrospective analysis in Southern Hungary. J Infect Dev Ctries 2020; 14:1004–1010 [View Article] [PubMed]
    [Google Scholar]
  44. Stock I, Burak S, Wiedemann B. Natural antimicrobial susceptibility patterns and biochemical profiles of Leclercia adecarboxylata strains. Clin Microbiol Infect 2004; 10:724–733 [View Article] [PubMed]
    [Google Scholar]
  45. Riazzo C, López-Cerero L, Rojo-Martín MD, Hoyos-Mallecot Y, Fernández-Cuenca F et al. First report of NDM-1-producing clinical isolate of Leclercia adecarboxylata in Spain. Diagn Microbiol Infect Dis 2017; 88:268–270 [View Article] [PubMed]
    [Google Scholar]
  46. Sun Q, Wang H, Shu L, Dong N, Yang F et al. Leclercia adecarboxylata from human gut flora carries mcr-4.3 and blaIMP-4-bearing plasmids. Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  47. Fang L, Li X, Li L, Li S, Liao X et al. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci Rep 2016; 6:25312 [View Article] [PubMed]
    [Google Scholar]
  48. Sølverødmo S, Slettemeås JS, Berg ES, Norström M, Sunde M. Plasmid and host strain characteristics of Escherichia coli resistant to extended-Spectrum cephalosporins in the norwegian broiler production. PLoS One 2016; 11:e0154019 [View Article] [PubMed]
    [Google Scholar]
  49. Tamang MD, Gurung M, Kang MS, Nam HM, Moon DC et al. Characterization of plasmids encoding CTX-M β-lactamase and their addiction systems in Escherichia coli isolates from animals. Vet Microbiol 2014; 174:456–462 [View Article] [PubMed]
    [Google Scholar]
  50. Cortés-Cortés G, Lozano-Zarain P, Torres C, Castañeda M, Sánchez GM et al. Detection and molecular characterization of Escherichia coli strains producers of extended-spectrum and CMY-2 type beta-lactamases, isolated from turtles in Mexico. Vector Borne Zoonotic Dis 2016; 16:595–603 [View Article] [PubMed]
    [Google Scholar]
  51. Mnif B, Harhour H, Jdidi J, Mahjoubi F, Genel N et al. Molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli in Tunisia and characterization of their virulence factors and plasmid addiction systems. BMC Microbiol 2013; 13: [View Article] [PubMed]
    [Google Scholar]
  52. Yu Z, Goodall ECA, Henderson IR, Guo J. Plasmids can shift bacterial morphological response against antibiotic stress. Adv Sci 2023; 10:e2203260 [View Article] [PubMed]
    [Google Scholar]
  53. Berne C, Zappa S. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. Elife 2022; 11:
    [Google Scholar]
  54. Lloyd GS, Thomas CM. Microbial primer: the logic of bacterial plasmids. Microbiology 2023; 169:001336 [View Article] [PubMed]
    [Google Scholar]
  55. Yang QE, Sun J, Li L, Deng H, Liu BT et al. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol 2015; 6: [View Article] [PubMed]
    [Google Scholar]
  56. Darphorn TS, Bel K, Koenders-van Sint Anneland BB, Brul S, Ter Kuile BH. Antibiotic resistance plasmid composition and architecture in Escherichia coli isolates from meat. Sci Rep 2021; 11:2136 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001457
Loading
/content/journal/micro/10.1099/mic.0.001457
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error