1887

Abstract

Salivary mucin, MUC5B, is an oligomeric glycoprotein, heterogeneous in size and with a diverse repertoire of oligosaccharides, which differ in composition and charge. Since complex salivary glycoproteins are considered to be the major source of nutrients for the oral supragingival microbiota, the major aim of the current study was to determine whether different preparations of non-denatured MUC5B could be isolated exhibiting different biological properties in relation to the microflora associated with the surfaces of the oral cavity. Two preparations, solMUC5B and gelMUC5B, were isolated by density-gradient centrifugation and were shown to have different buoyant densities, carbohydrate content and surface-adsorbing characteristics. To ascertain differences in biological activity, the two mucin preparations, both in solution and adsorbed to a model surface, were incubated with freshly isolated dental plaque and assayed for metabolic (dehydrogenase) activity with the fluoresecent substrate CTC (5-cyano-2,3-ditolyl tetrazolium chloride). The plaque bacteria exhibited higher metabolism with the solMUC5B preparation in solution, with 79.4 % active plaque cells compared to the controls without mucin (9.6 %), while gelMUC5B showed 48.2 % active cells with the same plaque population. In contrast, the same mucins adhered to a surface elicited a significantly lower metabolic response, with surface-associated plaque cells showing only 12.1 % active cells with solMUC5B and 29.2 % with gelMUC5B. These results suggested that the metabolism by the plaque cells adsorbed to surface-associated mucins was downregulated compared to the same cells suspended in mucin solution. This was confirmed in an experiment where active dispersed plaque/solMUC5B suspensions were shown to lose significant metabolic activity (e.g. 74.9 to 19.3 %) when allowed to interact with gelMUC5B adsorbed to a surface. Clearly, the solMUC5B and gelMUC5B preparations exhibited different biological activity when assayed with freshly plaque bacteria in suspension and in a biofilm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022111-0
2009-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/53.html?itemId=/content/journal/micro/10.1099/mic.0.022111-0&mimeType=html&fmt=ahah

References

  1. Beighton D., Whiley R. A. 1990; Sialidase activity of the “ Streptococcus milleri group” and other viridans group sterptococci. J Clin Microbiol 28:1431–1433
    [Google Scholar]
  2. Bowden G. H. 1991; Which bacteria are cariogenic in humans?. In Dental Caries pp 266–286 Edited by Johnson N. W. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Bradshaw D. J., Homer K. A., Marsh P. D., Beighton D. 1994; Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:3407–3412
    [Google Scholar]
  4. Burne R. A. 1998; Oral streptococci... products of their environment. J Dent Res 77:445–452
    [Google Scholar]
  5. Byers H. L., Tarelli E., Homer K. A., Beighton D. 2000; Isolation and characterisation of sialidase from a strain of Streptococcus oralis . J Med Microbiol 49:235–244
    [Google Scholar]
  6. Carlstedt I., Lindgren H., Sheehan J. K. 1983; The macromolecular structure of human cervical-mucus glycoproteins. Studies on fragments obtained after reduction of disulphide bridges and after subsequent trypsin digestion. Biochem J 213:427–435
    [Google Scholar]
  7. Chavez de Paz L. E. 2007; Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod 33:652–662
    [Google Scholar]
  8. Chávez de Paz L. E., Hamilton I. R., Svensäter G. 2008; Oral bacteria in biofilms exhibit slow reactivation from nutrient deprivation. Microbiology 154:1927–1938
    [Google Scholar]
  9. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464
    [Google Scholar]
  10. De Jong M. H., van der Hoeven J. S. 1987; The growth of oral bacteria on saliva. J Dent Res 66:498–505
    [Google Scholar]
  11. De Jong M. H., van der Hoeven J. S., van Os J. H., Olijve J. H. 1984; Growth of oral Streptococcus species and Actinomyces viscosus in human saliva. Appl Environ Microbiol 47:901–904
    [Google Scholar]
  12. Fletcher M. 1991; The physiological activity of bacteria attached to solid surfaces. Adv Microb Physiol 32:53–85
    [Google Scholar]
  13. Goodman A. E., Marshall K. C. 1995; Genetic responses of bacteria at surfaces. In Microbial Biofilms pp 80–98 Edited by Costerton J. W., Lappin-Scott H. M. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  14. Hidaka E., Ota H., Hidaka H., Hayama M., Matsuzawa K., Akamatsu T., Nakayama J., Katsuyama T. 2001; Helicobacter pylori and two ultrastructurally distinct layers of gastric mucous cell mucins in the surface mucous gel layer. Gut 49:474–480
    [Google Scholar]
  15. Jordan H. V., Krasse B., Möller A. 1968; A method of sampling human dental plaque for certain “caries-inducing” streptococci. Arch Oral Biol 13:919–927
    [Google Scholar]
  16. Kroes I., Lepp P. W., Relman D. A. 1999; Bacterial diversity within the human gingival crevice. Proc Natl Acad Sci U S A 96:14547–14552
    [Google Scholar]
  17. Marsh P. D. 2003; Are dental diseases examples of ecological catastrophes?. Microbiology 149:279–294
    [Google Scholar]
  18. Marsh P. D. 2005; Dental plaque: biological significance of a biofilm and community lifestyle. J Clin Periodontol 32:7–15
    [Google Scholar]
  19. Nieuw Amerongen A. V. N., Oderkerk C. H., Veerman E. C. I. 1989; Interaction of human salivary mucins with hydroxyapatite. J Biol Buccale 17:85–92
    [Google Scholar]
  20. O'Toole G. A., Kolter R. 1998; The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  21. Raynal B. D., Hardingham T. E., Thornton D. J., Sheehan J. K. 2002; Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva. Biochem J 362:289–296
    [Google Scholar]
  22. Raynal B. D., Hardingham T. E., Sheehan J. K., Thornton D. J. 2003; Calcium-dependent protein interaction in MUC5B provide reversible cross-links in salivary mucus. J Biol Chem 278:28703–28710
    [Google Scholar]
  23. Rousseau K., Wickström C., Whitehouse D. B., Carlstedt I., Dallas S. 2003; Production and characterisation of two new monoclonal antibodies to non-glycosylated domains of the MUC5B (MG1) and MUC7 (MG2) salivary mucins. Hybrid Hybridomics 22:293–299
    [Google Scholar]
  24. Scannapieco F. A. 1994; Saliva–bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5:203–248
    [Google Scholar]
  25. Sheehan J. K., Kesimer M., Pickles R. 2006; Innate immunity and mucus structure and function. Novartis Found Symp 279:155–166
    [Google Scholar]
  26. Socransky S. S., Haffajee A. D. 2002; Dental biofilms: difficult therapeutic targets. Periodontol 2000; 28:12–55
    [Google Scholar]
  27. Tabak L. A. 1995; In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol 57:547–564
    [Google Scholar]
  28. Taylor C., Allen A., Dettmar P. W., Pearson J. P. 2004; Two rheologically different gastric mucus secretions with different putative functions. Biochim Biophys Acta 1674131–138
    [Google Scholar]
  29. Thornton D. J., Sheehan J. K. 2004; From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc 1:54–61
    [Google Scholar]
  30. Thornton D. J., Howard M., Khan N., Sheehan J. K. 1997; Identification of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J Biol Chem 272:9561–9566
    [Google Scholar]
  31. van der Hoeven J. S., Camp P. J. M. 1991; Degradation of mucin by Streptococcus oralis and Streptococcus sanguis in mixed chemostat cultures. J Dent Res 70:1041–1044
    [Google Scholar]
  32. Veerman E. C., van den Keybus P. A., Valentijn-Benz M., Nieuw Amerongen A. V. N. 1992; Isolation of different high- M r mucin species from human whole saliva. Biochem J 283:807–811
    [Google Scholar]
  33. Welin J., Wilkins J. C., Beighton D., Svensäter G. 2004; Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl Environ Microbiol 70:3736–3741
    [Google Scholar]
  34. Wickström C., Carlstedt I. 2001; N-terminal cleavage of the salivary MUC5B mucin analogy with the von Willebrand pro-polypeptide?. J Biol Chem 276:47116–47121
    [Google Scholar]
  35. Wickström C., Svensäter G. 2008; Salivary gel-forming mucin MUC5B – a nutrient for dental plaque bacteria. Oral Microbiol Immunol 23:177–182
    [Google Scholar]
  36. Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. 1998; MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J 334:685–693
    [Google Scholar]
  37. Wickström C., Christersson C., Davies J. R., Carlstedt I. 2000; Macromolecular organization of saliva: identification of ‘insoluble’ MUC5B assemblies and non-mucin proteins in the gel phase. Biochem J 351:421–428
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022111-0
Loading
/content/journal/micro/10.1099/mic.0.022111-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error