1887

Abstract

Mucus-binding proteins (MUBs) have been revealed as one of the effector molecules involved in mechanisms of the adherence of lactobacilli to the host; , or -like, genes are found in all of the six genomes of that are available. We recently reported the crystal structure of a Mub repeat from ATCC 53608 (also designated strain 1063), revealing an unexpected recognition of immunoglobulins. In the current study, we explored the diversity of the ATCC 53608 gene, and MUB expression levels in a large collection of strains isolated from a range of vertebrate hosts. This analysis revealed that the MUB was only detectable on the cell surface of two highly related isolates when using antibodies that were raised against the protein. There was considerable variation in quantitative mucus adhesion among strains, and mucus binding showed excellent correlation with the presence of cell-surface ATCC 53608 MUB. ATCC 53608 MUB presence was further highly associated with the autoaggregation of strains in washed cell suspensions, suggesting a novel role of this surface protein in cell aggregation. We also characterized MUB expression in representative strains. This analysis revealed that one derivative of strain 1063 was a spontaneous mutant that expressed a C-terminally truncated version of MUB. This frameshift mutation was caused by the insertion of a duplicated 13 nt sequence at position 4867 nt in the gene, producing a truncated MUB also lacking the C-terminal LPxTG region, and thus unable to anchor to the cell wall. This mutant, designated 1063N (-4867), displayed low mucus-binding and aggregation capacities, further providing evidence for the contribution of cell-wall-anchored MUB to such phenotypes. In conclusion, this study provided novel information on the functional attributes of MUB in , and further demonstrated that MUB and MUB-like proteins, although present in many isolates, show a high genetic heterogeneity among strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043265-0
2010-11-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3368.html?itemId=/content/journal/micro/10.1099/mic.0.043265-0&mimeType=html&fmt=ahah

References

  1. Abbas Hilmi H. T., Surakka A., Apajalahti J., Saris P. E. 2007; Identification of the most abundant Lactobacillus species in the crop of 1- and 5-week-old broiler chickens. Appl Environ Microbiol 73:7867–7873
    [Google Scholar]
  2. Båth K., Roos S., Wall T., Jonsson H. 2005; The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253:75–82
    [Google Scholar]
  3. Boekhorst J., Helmer Q., Kleerebezem M., Siezen R. J. 2006; Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152:273–280
    [Google Scholar]
  4. Brooks S. P., McAllister M., Sandoz M., Kalmokoff M. L. 2003; Culture-independent phylogenetic analysis of the faecal flora of the rat. Can J Microbiol 49:589–601
    [Google Scholar]
  5. Bumbaca D., Littlejohn J. E., Nayakanti H., Lucas A. H., Rigden D. J., Galperin M. Y., Jedrzejas M. J. 2007; Genome-based identification and characterization of a putative mucin-binding protein from the surface of Streptococcus pneumoniae. Proteins 66:547–558
    [Google Scholar]
  6. Collado M. C., Grześkowiak Ł., Salminen S. 2007; Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55:260–265
    [Google Scholar]
  7. Connolly E. 2009; State of the art on research of Lactobacillus reuteri. Minerva Pediatr 61:634–636
    [Google Scholar]
  8. Dethlefsen L., Huse S., Sogin M. L., Relman D. A. 2008; The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280
    [Google Scholar]
  9. Heilig H. G., Zoetendal E. G., Vaughan E. E., Marteau P., Akkermans A. D., de Vos W. M. 2002; Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123
    [Google Scholar]
  10. Kankainen M., Paulin L., Tynkkynen S., von Ossowski I., Reunanen J., Partanen P., Satokari R., Vesterlund S., Hendrickx A. P. A. other authors 2009; Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106:17193–17198
    [Google Scholar]
  11. Kinoshita H., Uchida H., Kawai Y., Kitazawa H., Miura K., Shiiba K., Horii A., Saito T. 2007; Quantitative evaluation of adhesion of lactobacilli isolated from human intestinal tissues to human colonic mucin using surface plasmon resonance (BIACORE assay). J Appl Microbiol 102:116–123
    [Google Scholar]
  12. Kleerebezem M., Vaughan E. E. 2009; Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290
    [Google Scholar]
  13. Kleerebezem M., Hols P., Bernard E., Rolain T., Zhou M., Siezen R. J., Bron P. A. 2010; The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230
    [Google Scholar]
  14. Ledder R. G., Timperley A. S., Friswell M. K., Macfarlane S., McBain A. J. 2008; Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol Ecol 66:630–636
    [Google Scholar]
  15. Leser T. D., Amenuvor J. Z., Jensen T. K., Lindecrona R. H., Boye M., Møller K. 2002; Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690
    [Google Scholar]
  16. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S., Schlegel M. L., Tucker T. A., Schrenzel M. D. & other authors; 2008; Evolution of mammals and their gut microbes. Science 320:1647–1651
    [Google Scholar]
  17. Li X. J., Yue L. Y., Guan X. F., Qiao S. Y. 2008; The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 104:1082–1091
    [Google Scholar]
  18. MacKenzie D. A., Tailford L. E., Hemmings A. M., Juge N. 2009; Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 284:32444–32453
    [Google Scholar]
  19. Muñoz-Provencio D., Llopis M., Antolín M., de Torres I., Guarner F., Pérez-Martínez G., Monedero V. 2009; Adhesion properties of Lactobacillus casei strains to resected intestinal fragments and components of the extracellular matrix. Arch Microbiol 191:153–161
    [Google Scholar]
  20. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  21. Oh P. L., Benson A. K., Peterson D. A., Patil P. B., Moriyama E. N., Roos S., Walter J. 2010; Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J 4:377–387
    [Google Scholar]
  22. Ouwehand A. C., Tuomola E. M., Tölkkö S., Salminen S. 2001; Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int J Food Microbiol 64:119–126
    [Google Scholar]
  23. Pretzer G., Snel J., Molenaar D., Wiersma A., Bron P. A., Lambert J., de Vos W. M., van der Meer R., Smits M. A., Kleerebezem M. 2005; Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136
    [Google Scholar]
  24. Reuter G. 2001; The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2:43–53
    [Google Scholar]
  25. Rinkinen M., Westermarck E., Salminen S., Ouwehand A. C. 2003; Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus. Vet Microbiol 97:55–61
    [Google Scholar]
  26. Roos S., Jonsson H. 2002; A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442
    [Google Scholar]
  27. Roos S., Lindgren S., Jonsson H. 1999; Autoaggregation of Lactobacillus reuteri is mediated by a putative DEAD-box helicase. Mol Microbiol 32:427–436
    [Google Scholar]
  28. Rosander A., Connolly E., Roos S. 2008; Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol 74:6032–6040
    [Google Scholar]
  29. Salzman N. H., de Jong H., Paterson Y., Harmsen H. J., Welling G. W., Bos N. A. 2002; Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148:3651–3660
    [Google Scholar]
  30. Schreiber O., Petersson J., Phillipson M., Perry M., Roos S., Holm L. 2009; Lactobacillus reuteri prevents colitis by reducing P-selectin-associated leukocyte– and platelet–endothelial cell interactions. Am J Physiol Gastrointest Liver Physiol 296:G534–G542
    [Google Scholar]
  31. Tallon R., Arias S., Bressollier P., Urdaci M. C. 2007; Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J Appl Microbiol 102:442–451
    [Google Scholar]
  32. Ton-That H., Marraffini L. A., Schneewind O. 2004; Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 1694269–278
    [Google Scholar]
  33. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A. other authors 2009; A core gut microbiome in obese and lean twins. Nature 457:480–484
    [Google Scholar]
  34. Uchida H., Fujitani K., Kawai Y., Kitazawa H., Horii A., Shiiba K., Saito K., Saito T. 2004; A new assay using surface plasmon resonance (SPR) to determine binding of the Lactobacillus acidophilus group to human colonic mucin. Biosci Biotechnol Biochem 68:1004–1010
    [Google Scholar]
  35. Vesterlund S., Karp M., Salminen S., Ouwehand A. C. 2006; Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152:1819–1826
    [Google Scholar]
  36. Wadström T., Andersson K., Sydow M., Axelsson L., Lindgren S., Gullmar B. 1987; Surface properties of lactobacilli isolated from the small intestine of pigs. J Appl Bacteriol 62:513–520
    [Google Scholar]
  37. Walter J. 2008; Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996
    [Google Scholar]
  38. Walter J., Hertel C., Tannock G. W., Lis C. M., Munro K., Hammes W. P. 2001; Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585
    [Google Scholar]
  39. Walter J., Schwab C., Loach D. M., Gänzle M. G., Tannock G. W. 2008; Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:72–80
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043265-0
Loading
/content/journal/micro/10.1099/mic.0.043265-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error