1887

Abstract

Formation of the segrosome, a nucleoprotein complex crucial for proper functioning of plasmid partition systems, involves interactions between specific partition proteins (ParA-like and ParB-like), ATP and specific DNA sequences (the centromeric sites). Although partition systems have been studied for many years, details of the segrosome formation are not yet clear. Organization of the pSM19035-encoded partition system is unique; in contrast with other known systems, here, the and genes do not constitute an operon. Moreover, Omega [a ParB-like protein which has a Ribbon-Helix-Helix (RHH) structure] recognizes multiple centromeric sequences located in the promoters of , and (copy-number control gene). The ParA-like protein Delta is a Walker-type ATPase. In this work, we identify the interaction domains and requirements for dimerization and hetero-interactions of the Delta and Omega proteins of pSM19035 plasmid. The RHH structures are involved in Omega dimerization and its N-terminal unstructured part is indispensable for association with Delta, both and . Omega does not need to form dimers to interact with Delta. ATP binding is not required for Delta dimerization but is important for interaction with Omega . The interaction between Delta and Omega depends on ATP but does not require the presence of specific DNA segments (the centromere) recognized by Omega. The C-terminal part of the Delta protein (aa 198–284) is indispensable for interaction with Omega. Delta most probably interacts with Omega as a dimer since two amino acid substitutions in a conserved region between the A′ and B motifs abolish both the dimerization of Delta and its interaction with Omega.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045369-0
2011-04-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1009.html?itemId=/content/journal/micro/10.1099/mic.0.045369-0&mimeType=html&fmt=ahah

References

  1. Akhtar P., Anand S. P., Watkins S. C., Khan S. A. 2009; The tubulin-like RepX protein encoded by the pXO1 plasmid forms polymers in vivo in Bacillus anthracis . J Bacteriol 191:2493–2500
    [Google Scholar]
  2. Barillà D., Hayes F. 2003; Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation. Mol Microbiol 49:487–499
    [Google Scholar]
  3. Barillà D., Rosenberg M. F., Nobbmann U., Hayes F. 2005; Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J 24:1453–1464
    [Google Scholar]
  4. Barillà D., Carmelo E., Hayes F. 2007; The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc Natl Acad Sci U S A 104:1811–1816
    [Google Scholar]
  5. Bartosik A. A., Jagura-Burdzy G. 2005; Bacterial chromosome segregation. Acta Biochim Pol 52:1–34
    [Google Scholar]
  6. Bartosik A. A., Lasocki K., Mierzejewska J., Thomas C. M., Jagura-Burdzy G. 2004; ParB of Pseudomonas aeruginosa : interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol 186:6983–6998
    [Google Scholar]
  7. Behnke D., Golubkov V. I., Malke H., Boitsov A. S., Totolian A. A. 1979; Restriction endonuclease analysis of group A streptococcal plasmids determining resistance to macrolides, lincosamides and streptogramin-B antibiotics. FEMS Microbiol Lett 6:5–9
    [Google Scholar]
  8. Bignell C., Thomas C. M. 2001; The bacterial ParA–ParB partitioning proteins. J Biotechnol 91:1–34
    [Google Scholar]
  9. Bouet J. Y., Funnell B. E. 1999; P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J 18:1415–1424
    [Google Scholar]
  10. Bouet J.-Y., Ah-Seng Y., Benmeradi N., Lane D. 2007; Polymerization of SopA partition ATPase: regulation by DNA binding and SopB. Mol Microbiol 63:468–481
    [Google Scholar]
  11. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  12. Carmelo E., Barillà D., Golovanov A. P., Lian L. Y., Derome A., Hayes F. 2005; The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. J Biol Chem 280:28683–28691
    [Google Scholar]
  13. Davey M. J., Funnell B. E. 1994; The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem 269:29908–29913
    [Google Scholar]
  14. Davey M. J., Funnell B. E. 1997; Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J Biol Chem 272:15286–15292
    [Google Scholar]
  15. Davis M. A., Radnedge L., Martin K. A., Hayes F., Youngren B., Austin S. J. 1996; The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol Microbiol 21:1029–1036
    [Google Scholar]
  16. de la Hoz A. B., Ayora S., Sitkiewicz I., Fernández S., Pankiewicz R., Alonso J. C., Ceglowski P. 2000; Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci U S A 97:728–733
    [Google Scholar]
  17. de la Hoz A. B., Pratto F., Misselwitz R., Speck C., Weihofen W., Welfle K., Saenger W., Welfle H., Alonso J. C. 2004; Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats. Nucleic Acids Res 32:3136–3147
    [Google Scholar]
  18. Dimitrova M., Younès-Cauet G., Oertel-Buchheit P., Porte D., Schnarr M., Granger-Schnarr M. 1998; A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli . Mol Gen Genet 257:205–212
    [Google Scholar]
  19. Dmowski M., Sitkiewicz I., Ceglowski P. 2006; Characterization of a novel partition system encoded by the delta and omega genes from the streptococcal plasmid pSM19035. J Bacteriol 188:4362–4372
    [Google Scholar]
  20. Fogel M. A., Waldor M. K. 2006; A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev 20:3269–3282
    [Google Scholar]
  21. Fung E., Bouet J. Y., Funnell B. E. 2001; Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J 20:4901–4911
    [Google Scholar]
  22. Funnell B. E. 1991; The P1 plasmid partition complex at parS . The influence of Escherichia coli integration host factor and of substrate topology. J Biol Chem 266:14328–14337
    [Google Scholar]
  23. Gerdes K., Møller-Jensen J., Bugge Jensen R. 2000; Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37:455–466
    [Google Scholar]
  24. Gerdes K., Møller-Jensen J., Ebersbach G., Kruse T., Nordström K. 2004; Bacterial mitotic machineries. Cell 116:359–366
    [Google Scholar]
  25. Golovanov A. P., Barillà D., Golovanova M., Hayes F., Lian L.-Y. 2003; ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure. Mol Microbiol 50:1141–1153
    [Google Scholar]
  26. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  27. Hanai R., Liu R., Benedetti P., Caron P. R., Lynch A. S., Wang J. C. 1996; Molecular dissection of a protein SopB essential for Escherichia coli F plasmid partition. J Biol Chem 271:17469–17475
    [Google Scholar]
  28. Hayes F., Barillà D. 2006; Assembling the bacterial segrosome. Trends Biochem Sci 31:247–250
    [Google Scholar]
  29. Kim S. K., Shim J. 1999; Interaction between F plasmid partition proteins SopA and SopB. Biochem Biophys Res Commun 263:113–117
    [Google Scholar]
  30. Kulinska A., Czeredys M., Hayes F., Jagura-Burdzy G. 2008; Genomic and functional characterization of the modular broad-host-range RA3 plasmid, the archetype of the IncU group. Appl Environ Microbiol 74:4119–4132
    [Google Scholar]
  31. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  32. Larsen R. A., Cusumano C., Fujioka A., Lim-Fong G., Patterson P., Pogliano J. 2007; Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis . Genes Dev 21:1340–1352
    [Google Scholar]
  33. Lasocki K., Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G. 2007; Deletion of the parA ( soj ) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 189:5762–5772
    [Google Scholar]
  34. Leonard T. A., Butler P. J., Löwe J. 2005; Bacterial chromosome segregation: structure and DNA binding of the Soj dimer – a conserved biological switch. EMBO J 24:270–282
    [Google Scholar]
  35. Li Y. G., Dabrazhynetskaya A., Youngren B., Austin S. 2004; The role of Par proteins in the active segregation of the P1 plasmid. Mol Microbiol 53:93–102
    [Google Scholar]
  36. Lim G. E., Derman A. I., Pogliano J. 2005; Bacterial DNA segregation by dynamic SopA polymers. Proc Natl Acad Sci U S A 102:17658–17663
    [Google Scholar]
  37. Lochowska A., Iwanicka-Nowicka R., Zaim J., Witkowska-Zimny M., Bolewska K., Hryniewicz M. M. 2004; Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Mol Microbiol 53:791–806
    [Google Scholar]
  38. Lukaszewicz M., Kostelidou K., Bartosik A. A., Cooke G. D., Thomas C. M., Jagura-Burdzy G. 2002; Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res 30:1046–1055
    [Google Scholar]
  39. Machón C., Fothergill T. J. G., , Barillà D., Hayes F. 2007; Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors. J Mol Biol 374:1–8
    [Google Scholar]
  40. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Møller-Jensen J., Gerdes K. 2007; Plasmid segregation: spatial awareness at the molecular level. J Cell Biol 179:813–815
    [Google Scholar]
  42. Møller-Jensen J., Ringgaard S., Mercogliano C. P., Gerdes K., Löwe J. 2007; Structural analysis of the ParR/parC plasmid partition complex. EMBO J 26:4413–4422
    [Google Scholar]
  43. Morrissey J. H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310
    [Google Scholar]
  44. Murayama K., Orth P., de la Hoz A. B., Alonso J. C., Saenger W. 2001; Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution. J Mol Biol 314:789–796
    [Google Scholar]
  45. Myles G. M., Hearst J. E., Sancar A. 1991; Site-specific mutagenesis of conserved residues within Walker A and B sequences of Escherichia coli UvrA protein. Biochemistry 30:3824–3834
    [Google Scholar]
  46. Pratto F., Cicek A., Weihofen W. A., Lurz R., Saenger W., Alonso J. C. 2008; Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res 36:3676–3689
    [Google Scholar]
  47. Pratto F., Suzuki Y., Takeyasu K., Alonso J. C. 2009; Single-molecule analysis of protein–DNA complexes formed during partition of newly replicated plasmid molecules in Streptococcus pyogenes . J Biol Chem 284:30298–30306
    [Google Scholar]
  48. Quisel J. D., Grossman A. D. 2000; Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB. J Bacteriol 182:3446–3451
    [Google Scholar]
  49. Ravin N. V., Rech J., Lane D. 2003; Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J Mol Biol 329:875–889
    [Google Scholar]
  50. Ringgaard S., , Löwe J., Gerdes K. 2007; Centromere pairing by a plasmid-encoded type I ParB protein. J Biol Chem 282:28216–28225
    [Google Scholar]
  51. Sambrook J., Russell D. 2001 Molecular Cloning. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  53. Schreiter E. R., Drennan C. L. 2007; Ribbon-helix-helix transcription factors: variations on a theme. Nat Rev Microbiol 5:710–720
    [Google Scholar]
  54. Schumacher M. A., Glover T. C., Brzoska A. J., Jensen S. O., Dunham T. D., Skurray R. A., Firth N. 2007; Segrosome structure revealed by a complex of ParR with centromere DNA. Nature 450:1268–1271
    [Google Scholar]
  55. Sitkiewicz I. 2002; The regulatory gene omega of plasmid pSM19035 . PhD thesis Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences;
    [Google Scholar]
  56. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
    [Google Scholar]
  57. Suefuji K., Valluzzi R., RayChaudhuri D. 2002; Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc Natl Acad Sci U S A 99:16776–16781
    [Google Scholar]
  58. Surtees J. A., Funnell B. E. 2001; The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J Biol Chem 276:12385–12394
    [Google Scholar]
  59. van den Ent F., Møller-Jensen J., Amos L. A., Gerdes K., Löwe J. 2002; F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J 21:6935–6943
    [Google Scholar]
  60. Welfle K., Pratto F., Misselwitz R., Behlke J., Alonso J. C., Welfle H. 2005; Role of the N-terminal region and of beta-sheet residue Thr29 on the activity of the omega2 global regulator from the broad-host range Streptococcus pyogenes plasmid pSM19035. Biol Chem 386:881–894
    [Google Scholar]
  61. Williams D. R., Motallebi-Veshareh M., Thomas C. M. 1993; Multifunctional repressor KorB can block transcription by preventing isomerization of RNA polymerase-promoter complexes. Nucleic Acids Res 21:1141–1148
    [Google Scholar]
  62. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  63. Zielenkiewicz U., Ceglowski P. 2005; The toxin-antitoxin system of the streptococcal plasmid pSM19035. J Bacteriol 187:6094–6105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045369-0
Loading
/content/journal/micro/10.1099/mic.0.045369-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error