1887

Abstract

Multi-stress resistance is a widely documented and fascinating phenotype of lactococci where single mutations, preferentially in genes involved in nucleotide metabolism and phosphate uptake, result in elevated tolerance to multiple stresses simultaneously. In this report, we have analysed the metabolic basis behind this multi-stress-resistance phenotype in subsp. MG1363 using acid stress as a model of multi-stress resistance. Surprisingly, we found that MG1363 is fully resistant to pH 3.0 in the chemically defined SA medium, contrary to its sensitivity in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate to the acid-stress medium increased the stress sensitivity of MG1363. It is also shown that high intracellular guanine nucleotide pools confer increased sensitivity to high temperatures, thus showing that it is indeed a multi-stress phenotype. Our analysis suggests that an increased level of guanine nucleotides is formed as a result of an improved conversion of guanosine in the salvage pathway. Based upon our findings, we suggest that MG1363 is naturally multi-stress resistant in habitats devoid of any purine source. However, any exogenous purine that results in increased guanine nucleotide pools renders the bacterium sensitive to environmental stresses.

Funding
This study was supported by the:
  • Danish Dairy Research Foundation
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082586-0
2014-11-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2551.html?itemId=/content/journal/micro/10.1099/mic.0.082586-0&mimeType=html&fmt=ahah

References

  1. Beyer N. H., Roepstorff P., Hammer K., Kilstrup M. ( 2003). Proteome analysis of the purine stimulon from Lactococcus lactis.. Proteomics 3:786–797 [View Article][PubMed]
    [Google Scholar]
  2. Biswas I., Gruss A., Ehrlich S. D., Maguin E. ( 1993). High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175:3628–3635[PubMed]
    [Google Scholar]
  3. Bittner A. N., Kriel A., Wang J. D. ( 2014). Lowering GTP level increases survival of amino acid starvation but slows growth rate for Bacillus subtilis cells lacking (p)ppGpp. J Bacteriol 196:2067–2076 [View Article][PubMed]
    [Google Scholar]
  4. Budin-Verneuil A., Pichereau V., Auffray Y., Ehrlich D. S., Maguin E. ( 2005). Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5:4794–4807 [View Article][PubMed]
    [Google Scholar]
  5. Budin-Verneuil A., Pichereau V., Auffray Y., Ehrlich D., Maguin E. ( 2007). Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics 7:2038–2046 [View Article][PubMed]
    [Google Scholar]
  6. Dressaire C., Redon E., Milhem H., Besse P., Loubière P., Cocaign-Bousquet M. ( 2008). Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 9:343 [View Article][PubMed]
    [Google Scholar]
  7. Duwat P., Ehrlich S. D., Gruss A. ( 1995a). The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17:1121–1131 [View Article][PubMed]
    [Google Scholar]
  8. Duwat P., Sourice S., Ehrlich S. D., Gruss A. ( 1995b). recA gene involvement in oxidative and thermal stress in Lactococcus lactis.. Dev Biol Stand 85:455–467[PubMed]
    [Google Scholar]
  9. Duwat P., Cochu A., Ehrlich S. D., Gruss A. ( 1997). Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J Bacteriol 179:4473–4479[PubMed]
    [Google Scholar]
  10. Duwat P., Ehrlich S. D., Gruss A. ( 1999). Effects of metabolic flux on stress response pathways in Lactococcus lactis.. Mol Microbiol 31:845–858 [View Article][PubMed]
    [Google Scholar]
  11. Duwat P., Cesselin B., Sourice S., Gruss A. ( 2000). Lactococcus lactis, a bacterial model for stress responses and survival. Int J Food Microbiol 55:83–86 [View Article][PubMed]
    [Google Scholar]
  12. Gasson M. J. ( 1983). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9[PubMed]
    [Google Scholar]
  13. Hartke A., Bouche S., Gansel X., Boutibonnes P., Auffray Y. ( 1994). Starvation-induced stress resistance in Lactococcus lactis subsp. lactis IL1403. Appl Environ Microbiol 60:3474–3478[PubMed]
    [Google Scholar]
  14. Hartke A., Bouche S., Giard J. C., Benachour A., Boutibonnes P., Auffray Y. ( 1996). The lactic acid stress response of Lactococcus lactis subsp. lactis.. Curr Microbiol 33:194–199 [View Article][PubMed]
    [Google Scholar]
  15. Jendresen C. B., Kilstrup M., Martinussen J. ( 2011). A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography. Anal Biochem 409:249–259 [View Article][PubMed]
    [Google Scholar]
  16. Jendresen C. B., Martinussen J., Kilstrup M. ( 2012). The PurR regulon in Lactococcus lactis – transcriptional regulation of the purine nucleotide metabolism and translational machinery. Microbiology 158:2026–2038 [View Article][PubMed]
    [Google Scholar]
  17. Jendresen C. B., Dimitrov P., Gautier L., Liu M., Martinussen J., Kilstrup M. ( 2014). Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis. Microbiology 160:1321–1331 [View Article][PubMed]
    [Google Scholar]
  18. Jensen P. R., Hammer K. ( 1993). Minimal requirements for exponential growth of Lactococcus lactis.. Appl Environ Microbiol 59:4363–4366[PubMed]
    [Google Scholar]
  19. Kilstrup M., Hammer K. ( 2000). Short communication: salt extends the upper temperature limit for growth of Lactococcus lactis ssp. cremoris on solid M17 medium. J Dairy Sci 83:1448–1450 [View Article][PubMed]
    [Google Scholar]
  20. Kilstrup M., Martinussen J. ( 1998). A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.. J Bacteriol 180:3907–3916[PubMed]
    [Google Scholar]
  21. Kilstrup M., Jessing S. G., Wichmand-Jørgensen S. B., Madsen M., Nilsson D. ( 1998). Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol 180:3900–3906[PubMed]
    [Google Scholar]
  22. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J. ( 2005). Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590 [View Article][PubMed]
    [Google Scholar]
  23. Krásný L., Gourse R. L. ( 2004). An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–4483 [View Article][PubMed]
    [Google Scholar]
  24. Krásný L., Tiserová H., Jonák J., Rejman D., Sanderová H. ( 2008). The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis.. Mol Microbiol 69:42–54 [View Article][PubMed]
    [Google Scholar]
  25. Kriel A., Bittner A. N., Kim S. H., Liu K., Tehranchi A. K., Zou W. Y., Rendon S., Chen R., Tu B. P., Wang J. D. ( 2012). Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241 [View Article][PubMed]
    [Google Scholar]
  26. Martinussen J., Hammer K. ( 1995). Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections. Microbiology 141:1883–1890 [View Article][PubMed]
    [Google Scholar]
  27. Martinussen J., Wadskov-Hansen S. L., Hammer K. ( 2003). Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol 185:1503–1508 [View Article][PubMed]
    [Google Scholar]
  28. Nilsson D., Kilstrup M. ( 1998). Cloning and expression of the Lactococcus lactis purDEK genes, required for growth in milk. Appl Environ Microbiol 64:4321–4327[PubMed]
    [Google Scholar]
  29. Pao C. C., Dyes B. T. ( 1981). Effect of unusual guanosine nucleotides on the activities of some Escherichia coli cellular enzymes. Biochim Biophys Acta 677:358–362 [View Article][PubMed]
    [Google Scholar]
  30. Rallu F., Gruss A., Maguin E. ( 1996). Lactococcus lactis and stress. Antonie van Leeuwenhoek 70:243–251 [View Article][PubMed]
    [Google Scholar]
  31. Rallu F., Gruss A., Ehrlich S. D., Maguin E. ( 2000). Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol 35:517–528 [View Article][PubMed]
    [Google Scholar]
  32. Terzaghi B. E., Sandine W. E. ( 1975). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813[PubMed]
    [Google Scholar]
  33. Uratani B., Lopez J. M., Freese E. ( 1983). Effect of decoyinine on peptidoglycan synthesis and turnover in Bacillus subtilis.. J Bacteriol 154:261–268[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082586-0
Loading
/content/journal/micro/10.1099/mic.0.082586-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error