1887

Abstract

The genome of the facultatively photosynthetic bacterium encodes three proteins of the photolyase/cryptochrome family. This paper shows that (RSP2143) encodes a functional photolyase, which is an enzyme that repairs UV radiation-induced DNA damage in a blue light dependent manner. Expression of is upregulated in response to light, with no photoreceptor or the photosynthetic electron transport being involved. The results reveal that singlet oxygen and hydrogen peroxide dependent signals are transmitted by the factor and the anti- factor ChrR affecting expression, while superoxide anions do not stimulate expression. Thus, the regulon is involved not only in the response to singlet oxygen but also in the hydrogen peroxide response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004390-0
2007-06-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1842.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004390-0&mimeType=html&fmt=ahah

References

  1. Anthony J. R., Newman J. D., Donohue T. J. 2004; Interactions between the Rhodobacter sphaeroides ECF sigma factor, σ E, and its anti-sigma factor, ChrR. J Mol Biol 341:345–360 [CrossRef]
    [Google Scholar]
  2. Anthony J. R., Warczak K. L., Donohue T. J. 2005; A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci U S A 102:6502–6507 [CrossRef]
    [Google Scholar]
  3. Berrocal-Tito G., Sametz-Baron L., Eichenberg K., Horwitz B. A., Herrera-Estrella A. 1999; Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274:14288–14294 [CrossRef]
    [Google Scholar]
  4. Borland C. F., McGarvey D. J., Truscott T. G., Cogdell R. J., Land E. J. 1987; Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a – singlet oxygen generation. J Photochem Photobiol B 1:93–101 [CrossRef]
    [Google Scholar]
  5. Borland C. F., Cogdell R. J., Land E. J., Truscott T. G. 1989; Bacteriochlorophyll a triplet state and its interactions with bacterial carotenoids and oxygen. J Photochem Photobiol B 3:237–245 [CrossRef]
    [Google Scholar]
  6. Braatsch S., Klug G. 2004; ORF90, a gene required for photoreactivation in Rhodobacter capsulatus SB1003 encodes a cyclobutane pyrimidine dimer photolyase. Photosynth Res 79:167–177 [CrossRef]
    [Google Scholar]
  7. Braatsch S., Gomelsky M., Kuphal S., Klug G. 2002; A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Mol Microbiol 45:827–836 [CrossRef]
    [Google Scholar]
  8. Braatsch S., Moskvin O. V., Klug G., Gomelsky M. 2004; Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions. J Bacteriol 186:7726–7735 [CrossRef]
    [Google Scholar]
  9. Brudler R., Hitomi K., Daiyasu H., Toh H., Kucho K., Ishiura M., Kanehisa M., Roberts V. A., Todo T. other authors 2003; Identification of a new cryptochrome class: structure, function and evolution. Mol Cell 11:59–67 [CrossRef]
    [Google Scholar]
  10. Byrdin M., Eker A. P., Vos M. H., Brettel K. 2003; Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation. Proc Natl Acad Sci U S A 100:8676–8681 [CrossRef]
    [Google Scholar]
  11. Casadaban M. J., Chou J., Cohen S. N. 1980; In vitro gene fusions that join an enzymatically active β -galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143:971–980
    [Google Scholar]
  12. Cashmore A. R., Jarillo J. A., Wu Y. J., Liu D. 1999; Cryptochromes: blue light receptors for plants and animals. Science 284:760–765 [CrossRef]
    [Google Scholar]
  13. Daiyasu H., Iskikawa T., Kuma K., Iwai S., Todo T., Toh H. 2004; Identification of cryptochrome DASH from vertebrates. Genes Cells 9:479–495 [CrossRef]
    [Google Scholar]
  14. Debus R. J., Feher G., Okamura M. Y. 1985; LM complex of reaction centers from Rhodopseudomonas-sphaeroides R-26: characterization and reconstitution with the H-subunit. Biochemistry 24:2488–2500 [CrossRef]
    [Google Scholar]
  15. Ditta G., Schmidhauser T., Yakobsen E., Lu P., Liang X. W., Finlay D. R., Guiney D., Helinski D. R. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and monitoring gene expression. Plasmid 13:149–153 [CrossRef]
    [Google Scholar]
  16. Drews G. 1983 Mikrobiologisches Praktikum Heidelberg, Germany: Springer-Verlag;
    [Google Scholar]
  17. Fujihashi M., Numoto N., Kobayashi Y., Mizushima A., Tsujimura M., Nakamura A., Kawarabayasi Y., Miki K. 2007; Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. J Mol Biol 365:903–910 [CrossRef]
    [Google Scholar]
  18. Glaeser J., Klug G. 2005; Photo-oxidative stress in Rhodobacter sphaeroides : protective role of carotenoids and expression of selected genes. Microbiology 151:1927–1938 [CrossRef]
    [Google Scholar]
  19. Happ H. N., Braatsch S., Broschek V., Osterloh L., Klug G. 2005; Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Mol Microbiol 58:903–914 [CrossRef]
    [Google Scholar]
  20. Hu P., Brodie E. L., Suzuki Y., McAdams H. H., Andersen G. L. 2005; Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449 [CrossRef]
    [Google Scholar]
  21. Hübner P., Willison J. C., Vignais P. M., Bickle T. A. 1991; Expression of regulatory nif genes in Rhodobacter capsulatus. J Bacteriol 173:2993–2999
    [Google Scholar]
  22. Hübner P., Masepohl B., Klipp W., Bickle T. A. 1993; nif gene expression studies in Rhodobacter capsulatus : ntrC -independent repression by high ammonium concentrations. Mol Microbiol 10:123–132 [CrossRef]
    [Google Scholar]
  23. Kavakli I. H., Sancar A. 2004; Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo. Biochemistry 43:15103–15110 [CrossRef]
    [Google Scholar]
  24. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197 [CrossRef]
    [Google Scholar]
  25. Kihara J., Moriwaki A., Matsuo N., Arase S., Honda Y. 2004; Cloning, functional characterization, and near-ultraviolet radiation-enhanced expression of a photolyase gene ( PHR1 ) from the phytopathogenic fungus Bipolaris oryzae. Curr Genet 46:37–46
    [Google Scholar]
  26. Klug G., Drews G. 1984; Construction of a gene bank of Rhodopseudomonas capsulata using a broad host range DNA cloning system. Arch Microbiol 139:319–325 [CrossRef]
    [Google Scholar]
  27. Lang H. P., Cogdell R. J., Takaichi S., Hunter C. N. 1995; Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroides. J Bacteriol 177:2064–2073
    [Google Scholar]
  28. Lin C., Shalitin D. 2003; Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496 [CrossRef]
    [Google Scholar]
  29. Mitani H., Shima A. 1995; Induction of cyclobutane pyrimidine dimer photolyase in cultured fish cells by fluorescent light and oxygen stress. Photochem Photobiol 61:373–377 [CrossRef]
    [Google Scholar]
  30. Mitani H., Uchida N., Shima A. 1996; Induction of cyclobutane pyrimidine dimer photolyase in cultured fish cells by UVA and blue light. Photochem Photobiol 64:943–948 [CrossRef]
    [Google Scholar]
  31. Newman J. D., Falkowski M. J., Schilke B. A., Anthony L. C., Donohue T. J. 1999; The Rhodobacter sphaeroides ECF sigma factor, σ E, and the target promoters cycA P3 and rpoE P1. J Mol Biol 294:307–320 [CrossRef]
    [Google Scholar]
  32. Newman J. D., Anthony J. R., Donohue T. J. 2001; The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J Mol Biol 313:485–499 [CrossRef]
    [Google Scholar]
  33. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750 [CrossRef]
    [Google Scholar]
  34. Nieuwlandt D. T., Palmer J. R., Armbruster D. T., Kuo Y.-P., Oda W., Daniels C. J. 1995; A rapid procedure for the isolation of RNA from Haloferax volcanii . In Archaea: A Laboratory Manual pp 161–162 Edited by Robb F. T., Place A. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  35. Page K. A., Connon S. A., Giovannoni S. J. 2004; Representative freshwater bacterioplankton isolated from Crater Lake, Oregon. Appl Environ Microbiol 70:6542–6550 [CrossRef]
    [Google Scholar]
  36. Partch C. L., Sancar A. 2005; Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 81:1291–1304 [CrossRef]
    [Google Scholar]
  37. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007
    [Google Scholar]
  38. Rupert C. S., Goodgal S. H., Herriott R. M. 1958; Photoreactivation in vitro of ultraviolet-inactivated Hemophilus influenzae transforming factor. J Gen Physiol 41:451–471 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Russell D. W. 2001 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  40. Sancar A. 2003; Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237 [CrossRef]
    [Google Scholar]
  41. Schilke B. A., Donohue T. J. 1995; ChrR positively regulates transcription of the Rhodobacter sphaeroides cytochrome c 2 gene. J Bacteriol 177:1929–1937
    [Google Scholar]
  42. Selby C. P., Sancar A. 2006; A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A 21:17696–17700
    [Google Scholar]
  43. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  44. Sockett R. E., Donohue T. J., Varga A. R., Kaplan S. 1989; Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences. J Bacteriol 171:436–446
    [Google Scholar]
  45. Tamada T., Kitadoroko K., Higuchi Y., Inaka K., Yasui A., Eker A. P., Miki K., de Ruiter P. E. 1997; Crystal structure of DNA photolyase from Anacystis nidulans. Nat Struct Biol 4:887–891 [CrossRef]
    [Google Scholar]
  46. Tehrani A., Prince R. C., Beatty J. T. 2003; Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides. Biochemistry 42:8919–8928 [CrossRef]
    [Google Scholar]
  47. Toptchieva A., Sisson G., Bryden L. J., Taylor D. E., Hoffman P. S. 2003; An inducible tellurite-resistance operon in Proteus mirabilis. Microbiology 149:1285–1295 [CrossRef]
    [Google Scholar]
  48. Ueda T., Kato A., Kuramitsu S., Terasawa H., Shimada I. 2005; Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27. J Biol Chem 280:36237–36243 [CrossRef]
    [Google Scholar]
  49. van Niel C. B. 1944; The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8:1–118
    [Google Scholar]
  50. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  51. Yang H. Q., Tang R. H., Cashmore A. R. 2001; The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–2587 [CrossRef]
    [Google Scholar]
  52. Yasuhira S., Mitani H., Shima A. 1991; Enhancement of photorepair of ultraviolet-damage by preillumination with fluorescent light in cultured fish cells. Photochem Photobiol 53:211–215 [CrossRef]
    [Google Scholar]
  53. Zeilstra-Ryalls J., Gomelsky M., Eraso J. M., Yeliseev A., O'Gara J., Kaplan S. 1998; Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 180:2801–2809
    [Google Scholar]
  54. Zeller T., Klug G. 2004; Detoxification of hydrogen peroxide and expression of catalase genes in Rhodobacter. Microbiology 150:3451–3462 [CrossRef]
    [Google Scholar]
  55. Zeller T., Moskvin O. V., Li K., Klug G., Gomelsky M. 2005; Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. J Bacteriol 187:7232–7242 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004390-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004390-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error