1887

Abstract

Invariant and highly conserved amino acids within a primase consensus sequence were targeted by site-specific mutations within the putative primase of phage 3. PCR products containing the desired mutation(s) within putative ATPase/helicase and/or oligomerization domains of the 3-encoded primase gene were cloned into a high-copy-number vector and expressed in NCK1125. The majority of the plasmid constructs failed to alter phage sensitivity; however, four of the constructs conferred strong phage resistance upon the host. Expression of the K238(A/T) and RR340-341AA mutant proteins suppressed the function of the native phage primase protein in a dominant negative fashion via a proposed subunit poisoning mechanism. These constructs completely inhibited phage genome synthesis and reduced the efficiencies of plaquing and centre of infection formation by more than 9 and 3.5 logs, respectively. Amber mutations introduced upstream of the transdominant RR340-341AA and K238(A/T) mutations restored phage genome replication and sensitivity of the host, indicating that translation was required to confer phage resistance. Introduction of an E437A mutation in a putative oligomerization domain located downstream of the transdominant K238T mutation also completely suppressed phage resistance. This study appears to represent the first use of transdominant proteins to inhibit phages that are disruptive to cultures used in industrial fermentations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007567-0
2007-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3295.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007567-0&mimeType=html&fmt=ahah

References

  1. Altermann E., Klein J. R., Henrich B. 1999; Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage φ adh. Gene 236:333–346
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast, a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Bouchard J. D., Moineau S. 2000; Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270:65–75
    [Google Scholar]
  4. Brüssow H., Desiere F. 2001; Comparative phage genomics and the evolution of Siphoviridae : insights from dairy phages. Mol Microbiol 39:213–222
    [Google Scholar]
  5. Brüssow H., Probst A., Fremont M., Sidoti J. 1994; Distinct Streptococcus thermophilus bacteriophages share an extremely conserved DNA fragment. Virology 200:854–857
    [Google Scholar]
  6. Bruttin A., Desiere F., d'Amico N., Guérin J. P., Sidoti J., Huni B., Lucchini S., Brüssow H. 1997; Molecular ecology of Streptococcus thermophilus bacteriophage infections in a cheese factory. Appl Environ Microbiol 63:3144–3150
    [Google Scholar]
  7. Desiere F., Lucchini S., Canchaya C., Ventura M., Brüssow H. 2002; Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek 82:73–91
    [Google Scholar]
  8. Djordjevic G., Bojovic B., Miladinov N., Topisirovic L. 1997; Cloning and molecular analysis of promoter-like sequences isolated from the chromosomal DNA of Lactobacillus acidophilus ATCC 4356. Can J Microbiol 43:61–69
    [Google Scholar]
  9. Durmaz E., Klaenhammer T. R. 2000; Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Appl Environ Microbiol 66:895–903
    [Google Scholar]
  10. Frick D. N., Richardson C. C. 2001; DNA primases. Annu Rev Biochem 70:39–80
    [Google Scholar]
  11. Hill C., Massey I. J., Klaenhammer T. R. 1991; Rapid method to characterize lactococcal bacteriophage genomes. Appl Environ Microbiol 57:283–288
    [Google Scholar]
  12. Horton R. M. 1995; PCR-mediated recombination and mutagenesis: SOEing together tailor-made genes. Mol Biotechnol 3:93–99
    [Google Scholar]
  13. Huynh T. V., Young R. A., Davis R. W. 1985; Construction and screening cDNA libraries in λ gt10 and λ gt11. In DNA cloning vol. I pp 49–78 Edited by Glover I. D. M. Oxford: IRL Press;
    [Google Scholar]
  14. Ilyina T. V., Gorbalenya A. E., Koonin E. V. 1992; Organization and evolution of bacterial and bacteriophage primase-helicase systems. J Mol Evol 34:351–357
    [Google Scholar]
  15. Lucchini S., Desiere F., Brüssow H. 1999; Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J Virol 73:8647–8656
    [Google Scholar]
  16. Moineau S., Borkaev M., Holler B. J., Walker S. A., Kondo J. K., Vedamuthu E. R., Vandenbergh P. A. 1996; Isolation and characterization of lactococcal bacteriophages from cultured buttermilk plants in the United States. J Dairy Sci 79:2104–2111
    [Google Scholar]
  17. Notarnicola S. M., Richardson C. C. 1993; The nucleotide binding site of the helicase/primase of bacteriophage T7. Interaction of mutant and wild-type proteins. J Biol Chem 268:27198–27207
    [Google Scholar]
  18. Notarnicola S. M., Park K., Griffith J. D., Richardson C. C. 1995; A domain of the gene 4 helicase/primase of bacteriophage T7 required for the formation of an active hexamer. J Biol Chem 270:20215–20224
    [Google Scholar]
  19. Nuesch J. P., Tattersall P. 1993; Nuclear targeting of the parvoviral replicator molecule NS1: evidence for self-association prior to nuclear transport. Virology 196:637–651
    [Google Scholar]
  20. Sing W. D., Klaenhammer T. R. 1990; Characteristics of phage abortion conferred in lactococci by the conjugal plasmid pTR2030. J Gen Microbiol 136:1807–1815
    [Google Scholar]
  21. Sturino J. M., Klaenhammer T. R. 2002; Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Appl Environ Microbiol 68:588–596
    [Google Scholar]
  22. Sturino J. M., Klaenhammer T. R. 2004; Antisense RNA targeting primase interferes with bacteriophage replication in Streptococcus thermophilus . Appl Environ Microbiol 70:1735–1743
    [Google Scholar]
  23. Sturino J. M., Klaenhammer T. R. 2006; Engineered bacteriophage-defense systems in bioprocessing. Nat Rev Microbiol 4:395–404
    [Google Scholar]
  24. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V. 2001; The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  26. Wang D., Yuan W., Davis I., Parrish C. R. 1998; Nonstructural protein-2 and the replication of canine parvovirus. Virology 240:273–281
    [Google Scholar]
  27. Ziegelin G., Scherzinger E., Lurz R., Lanka E. 1993; Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J 12:3703–3708
    [Google Scholar]
  28. Ziegelin G., Linderoth N. A., Calendar R., Lanka E. 1995; Domain structure of phage P4 alpha protein deduced by mutational analysis. J Bacteriol 177:4333–4341
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007567-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007567-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error