1887

Abstract

The gene codes for a putative copper-translocating P-type ATPase and the downstream gene codes for a copper chaperone. Genome database analyses demonstrate that these copper transport genes are highly conserved in . The expression of and was inducible by copper and to some extent by ferric and lead ions. A mutant strain containing a partially deleted gene was more sensitive than the parent strain to copper, ferric and lead ions. The copper-sensitive phenotype was due to the accumulation of intracellular copper and thus the product is involved in the export of copper ions. The metal-sensitive phenotype of the mutant was complemented by a 2.7 kbp DNA containing . We have cloned and overexpressed the metal-binding domains of CopA and CopZ and have shown by site-directed mutagenesis that the cysteine residues in the CXXC metal-binding motif in CopA are involved in copper binding and thus play an important role in copper transport in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009860-0
2007-12-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4274.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009860-0&mimeType=html&fmt=ahah

References

  1. Allemandou F., Nussberger J., Brunner H. R., Brakch N. 2003; Rapid site-directed mutagenesis using two-PCR-generated DNA fragments reproducing the plasmid template. J Biomed Biotechnol 2003202–207
    [Google Scholar]
  2. Archer G. L. 1998; Staphylococcus aureus : a well-armed pathogen. Clin Infect Dis 26:1179–1181
    [Google Scholar]
  3. Arguello J. M., Mandal A. K., Mana-Capelli S. 2003; Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus . Ann N Y Acad Sci 986:212–218
    [Google Scholar]
  4. Bae T., Schneewind O. 2006; Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55:58–63
    [Google Scholar]
  5. Bremner I. 1998; Manifestations of copper excess. Am J Clin Nutr 67 :5 Suppl.1069S–1073S
    [Google Scholar]
  6. Brenner A. J., Harris E. D. 1995; A quantitative test for copper using bicinchoninic acid. Anal Biochem 226:80–84
    [Google Scholar]
  7. Cabrera G., Xiong A., Uebel M., Singh V. K., Jayaswal R. K. 2001; Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus . Appl Environ Microbiol 67:1001–1003
    [Google Scholar]
  8. Cooksey D. A. 1993; Copper uptake and resistance in bacteria. Mol Microbiol 7:1–5
    [Google Scholar]
  9. Deigweiher K., Drell T. L., Prutsch A., Scheidig A. J., Lubben M. 2004; Expression, isolation, and crystallization of the catalytic domain of copB , a putative copper transporting ATPase from the thermoacidophilic archaeon Sulfolobus solfataricus . J Bioenerg Biomembranes 36:151–159
    [Google Scholar]
  10. DiDonato M., Narindrasorasak S., Forbes J. R., Cox D. W., Sarkar B. 1997; Expression, purification, and metal-binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B. J Biol Chem 272:33279–33282
    [Google Scholar]
  11. Gaballa A., Helmann J. D. 2003; Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Biometals 16:497–505
    [Google Scholar]
  12. Gaetke L. M., Chow C. K. 2003; Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163
    [Google Scholar]
  13. Gatti D., Mitra B., Rosen B. P. 2000; Escherichia coli soft metal ion-translocating ATPases. J Biol Chem 275:34009–34012
    [Google Scholar]
  14. Harrison M. D., Jones C. E., Solioz M., Dameron C. T. 2000; Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32
    [Google Scholar]
  15. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J. 2002; σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184:5457–5467
    [Google Scholar]
  16. Huffman D. L., O'Halloran T. V. 2001; Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701
    [Google Scholar]
  17. Kreiswirth B. N., Lofdahl M. S., Betley M. J., O' Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by prophage. Nature 305:709–712
    [Google Scholar]
  18. Lee C. Y., Schmidt J. J., Johnson-Winergar A. D., Spero L., Iandolo J. J. 1987; Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus . J Bacteriol 169:3904–3909
    [Google Scholar]
  19. Lutsenko S., Kaplan J. H. 1995; Organization of P-type ATPases: significance of structural diversity. Biochemistry 34:15607–15613
    [Google Scholar]
  20. Lutsenko S., Petrukhin K., Cooper M. J., Gilliam C. T., Kaplan J. H. 1997; N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson's and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal binding repeat. J Biol Chem 272:18939–18944
    [Google Scholar]
  21. Mason H. S. 1976; Binuclear copper clusters as active sites for oxidases. Adv Exp Med Biol 74:464–469
    [Google Scholar]
  22. Massaro E. J. 2002 Handbook of Copper Toxicology pp 624 Totowa, NJ: Humana Press;
  23. Multhaup G., Strausak D., Bissig K. D., Solioz M. 2001; Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288:172–177
    [Google Scholar]
  24. Nicholas K. M., Wentworth P., Harwig C. W., Wentworth A., Shafton D., Janda K. D. 2002; A cofactor approach to copper-dependent catalytic antibodies. Proc Natl Acad Sci U S A 99:2648–2653
    [Google Scholar]
  25. Pierre J. L., Fontecave M. 1999; Iron and activated oxygen species in biology: the basic chemistry. Biometals 12:195–199
    [Google Scholar]
  26. Pufahl R. A., Singer C. P., Peariso K. L., Lin S. J., Schmidt P. J., Fahrni C. J., Culotta C., Penner-Hahn J. E., O'Halloran T. V. 1997; Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856
    [Google Scholar]
  27. Radford D. S., Kihlken M. A., Borrelly G. P., Harwood C. R., Le Brun N. E., Caver J. S. 2003; CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220:105–112
    [Google Scholar]
  28. Rensing C., Bin F., Sharma R., Mitra B., Rosen B. P. 2000; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656
    [Google Scholar]
  29. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  30. Silver S., Phung L. T. 1996; Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789
    [Google Scholar]
  31. Singh V. K., Xiong A., Usgaard T., Chakrabarty S., Deora R., Misra T., Jayaswal R. K. 1999; ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon of S. aureus . Mol Microbiol 33:200–207
    [Google Scholar]
  32. Sitthisak S., Howieson K., Amezola C., Jayaswal R. K. 2005; Characterization of a multicopper oxidase gene from Staphylococcus aureus . Appl Environ Microbiol 71:5650–5653
    [Google Scholar]
  33. Solioz M., Stoyanov J. V. 2003; Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev 27:183–195
    [Google Scholar]
  34. Solioz M., Vulpe C. 1996; CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241
    [Google Scholar]
  35. Townsend D. E., Wilkinson B. J. 1992; Proline transport in Staphylococcus aureus : a high-affinity system and a low-affinity system involved in osmoregulation. J Bacteriol 174:2702–2710
    [Google Scholar]
  36. van Bakel H., Huynen M., Wijmenga C. 2004; Prokaryotic diversity of the Saccharomyces cerevisiae Atx1p-mediated copper pathway. Bioinformatics 20:2644–2655
    [Google Scholar]
  37. van Bakel H., Strengman E., Wijmenga C., Holstege F. C. 2005; Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol Genomics 22:356–367
    [Google Scholar]
  38. Walker J. M., Tsivkovskii R., Lutsenko S. 2002; Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959
    [Google Scholar]
  39. Walker J. M., Huster D., Ralle M., Morgan C. T., Blackburn N. J., Lutsenko S. 2004; The N-terminal metal-binding site 2 of the Wilson's disease protein plays a key role in the transfer of copper from atox1. J Biol Chem 279:15376–15384
    [Google Scholar]
  40. Xiong A., Jayaswal R. K. 1998; Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus . J Bacteriol 180:4024–4029
    [Google Scholar]
  41. Xiong A., Singh V. K., Cabrera G., Jayaswal R. K. 2000; Molecular characterization of a ferric uptake regulator, Fur, from Staphylococcus aureus . Microbiology 146:659–668
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009860-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009860-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error