1887

Abstract

A novel protein, PA0122, has been identified in and shown to bind to oxidized low-density lipoprotein (Ox-LDL). The PA0122 gene was recognized based on gene expression pattern differences between two strains of isolated from the sputum of an individual with cystic fibrosis (CF). There was an approximately eightfold increase in PA0122 expression in the non-mucoid strain 383, compared to that in the mucoid strain 2192. Quantitative real-time RT-PCR (qRT-PCR) supported PA0122 transcript expression differences between strains 383 and 2192 and revealed growth-phase dependence, with the highest level of expression at early stationary phase (OD 1.5). PA0122 encodes a 136 aa ‘conserved hypothetical’ protein that has similarity to Asp-haemolysin, which is an Ox-LDL-binding protein, and possessed a motif that is homologous to the fungal aegerolysin family of proteins. Antibodies produced to purified recombinant PA0122 recognized a 16 kDa protein band in cell lysates as well as in the supernatant fractions of strain 383. The PA0122 protein expression pattern was growth phase-dependent, with maximal production observed at OD 1.5 that was consistent with the PA0122 transcript expression profile. Subcellular fractionation studies revealed differences in the localization of PA0122 between strains 383 and 2192. In 383, PA0122 was observed in the cytoplasm and in membrane fractions. In 2192, PA0122 was found in the cytoplasm but was not detected in membrane fractions. Surface plasmon resonance revealed that recombinant PA0122 binds with high affinity to Ox-LDL and to its major subcomponent, lysophosphatidylcholine, but not to non-oxidized LDL.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011429-0
2008-02-01
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/654.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011429-0&mimeType=html&fmt=ahah

References

  1. Bagge N., Schuster M., Hentzer M., Ciofu O., Givskov M., Greenberg E. P., Hoiby N. 2004; Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β -lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187
    [Google Scholar]
  2. Berne S., Krizaj I., Pohleven F., Turk T., Macek P., Sepcic K. 2002; Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 1570153–159
    [Google Scholar]
  3. Borriello G., Werner E., Roe F., Kim A. M., Ehrlich G. D., Stewart P. S. 2004; Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Bragonzi A., Worlitzsch D., Pier G. B., Timpert P., Ulrich M., Hentzer M., Andersen J. B., Givskov M., Conese M., Doring G. 2005; Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 192:410–419
    [Google Scholar]
  6. Chen H., Cheng H., Bjerknes M. 1993; One-step Coomassie brilliant blue R-250 staining of proteins in polyacrylamide gel. Anal Biochem 212:295–296
    [Google Scholar]
  7. Chugani S., Greenberg E. P. 2007; The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microb Pathog 42:29–35
    [Google Scholar]
  8. Coleman L. G. Jr, Polanowska-Grabowska R. K., Marcinkiewicz M., Gear A. R. L. 2004; LDL oxidized by hypochlorous acid causes irreversible platelet aggregation when combined with low levels of ADP, thrombin, epinephrine, or macrophage-derived chemokine (CCL22. Blood 104:380–389
    [Google Scholar]
  9. Darzins A., Chakrabarty A. M. 1984; Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa . J Bacteriol 159:9–18
    [Google Scholar]
  10. Davies J. C. 2002; Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 3:128–134
    [Google Scholar]
  11. De Vos D., De Chial M., Cochez C., Jansen S., Tummler B., Meyer J. M., Cornelis P. 2001; Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388
    [Google Scholar]
  12. Doggett R. G. 1969; Incidence of mucoid Pseudomonas aeruginosa from clinical sources. Appl Microbiol 18:936–937
    [Google Scholar]
  13. Ebina K., Ichinowatari S., Yokota K. 1985; Studies on toxin of Aspergillus fumigatus . XXII. Fashion of binding of Asp-hemolysin to human erythrocytes and Asp-hemolysin-binding proteins of erythrocyte membranes. Microbiol Immunol 29:91–101
    [Google Scholar]
  14. Firoved A. M., Deretic V. 2003; Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa . J Bacteriol 185:1071–1081
    [Google Scholar]
  15. Firoved A. M., Boucher J. C., Deretic V. 2002; Global genomic analysis of AlgU ( σ E)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 184:1057–1064
    [Google Scholar]
  16. Firoved A. M., Ornatowski W., Deretic V. 2004; Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa : implications for inflammation in cystic fibrosis. Infect Immun 72:5012–5018
    [Google Scholar]
  17. Frisk A., Schurr J. R., Wang G., Bertucci D. C., Marrero L., Hwang S. H., Hassett D. J., Schurr M. J. 2004; Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72:5433–5438
    [Google Scholar]
  18. Fukuchi Y., Kudo Y., Kumagai T., Ebina K., Yokota K. 1998; Oxidized low density lipoprotein inhibits the hemolytic activity of Asp-hemolysin from Aspergillus fumigatus . FEMS Microbiol Lett 167:275–280
    [Google Scholar]
  19. Goldberg J. B., Ohman D. E. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121
    [Google Scholar]
  20. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  21. Hancock R. E., Nikaido H. 1978; Outer membranes of Gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J Bacteriol 136:381–390
    [Google Scholar]
  22. Hancock R. E., Mutharia L. M., Chan L., Darveau R. P., Speert D. P., Pier G. B. 1983; Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42:170–177
    [Google Scholar]
  23. Hanna S. L., Sherman N. E., Kinter M. T., Goldberg J. B. 2000; Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146:2495–2508
    [Google Scholar]
  24. Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov M., Parsek M. R. 2001; Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401
    [Google Scholar]
  25. Ichikawa J. K., Norris A., Bangera M. G., Geiss G. K., van't Wout A. B., Bumgarner R. E., Lory S. 2000; Interaction of Pseudomonas aeruginosa with epithelial cells: identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc Natl Acad Sci U S A 97:9659–9664
    [Google Scholar]
  26. Institute of Laboratory Animal Resources Commission on Life Sciences 1996 Guide for the Care and Use of Laboratory Animals Washington DC: National Academy Press;
  27. Kong K. F., Jayawardena S. R., Indulkar S. D., del Puerto A., Koh C. L., Hoiby N., Mathee K. 2005; Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β -lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 49:4567–4575
    [Google Scholar]
  28. Kudo Y., Kumagai T., Fukuchi Y., Ebina K., Yokota K. 1999; Binding of Asp-hemolysin from Aspergillus fumigatus to oxidized low density lipoprotein. Biol Pharm Bull 22:549–550
    [Google Scholar]
  29. Kudo Y., Fukuchi Y., Kumagai T., Ebina K., Yokota K. 2001; Oxidized low-density lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus . Biochim Biophys Acta 1568183–188
    [Google Scholar]
  30. Kudo Y., Ootani T., Kumagai T., Fukuchi Y., Ebin K., Yokota K. 2002; A novel oxidized low-density lipoprotein-binding protein, Asp-hemolysin, recognizes lysophosphatidylcholine. Biol Pharm Bull 25:787–790
    [Google Scholar]
  31. Kumagai T., Nagata T., Kudo Y., Fukuchi Y., Ebina K., Yokota K. 1999; Cytotoxic activity and cytokine gene induction of Asp-hemolysin to murine macrophages. Nippon Ishinkin Gakkai Zasshi 40:217–222
    [Google Scholar]
  32. Kumagai T., Kudo Y., Fukuchi Y., Ebina K., Yokota K. 2002; Expression of a synthetic gene encoding the Asp-hemolysin from Aspergillus fumigatus in Escherichia coli . Biol Pharm Bull 25:115–157
    [Google Scholar]
  33. Kumagai T., Ogawa N., Tsutsumi H., Ebina K., Yokota K. 2005; A synthetic peptide (P-21) derived from Asp-hemolysin inhibits the induction of macrophage proliferation by oxidized low-density lipoprotein. Biol Pharm Bull 28:1381–1384
    [Google Scholar]
  34. Kumagai T., Tsutsumi H., Ogawa N., Naito S., Ebina K., Yokota K., Nagata K. 2006; Oxidized low-density lipoprotein-binding specificity of the Asp-hemolysin-related synthetic peptides from Aspergillus fumigatus . Biol Pharm Bull 29:2181–2186
    [Google Scholar]
  35. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  36. Laux D. C., Corson J. M., Givskov M., Hentzer M., Moller A., Wosencroft K. A., Olson J. C., Krogfelt K. A., Goldberg J. B., Cohen P. S. 2002; Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. Microbiology 148:1709–1723
    [Google Scholar]
  37. Lizewski S. E., Schurr J. R., Jackson D. W., Frisk A., Carterson A. J., Schurr M. J. 2004; Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684
    [Google Scholar]
  38. Luzar M. A., Thomassen M. J., Montie T. C. 1985; Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition. Infect Immun 50:577–582
    [Google Scholar]
  39. Mahenthiralingam E., Campbell M. E., Speert D. P. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605
    [Google Scholar]
  40. Marchler-Bauer A., Bryant S. H. 2004; CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331
    [Google Scholar]
  41. Marty N., Pasquier C., Dournes J. L., Chemin K., Chavagnat F., Guinand M., Chabanon G., Pipy B., Montrozier H. 1998; Effects of characterised Pseudomonas aeruginosa exopolysaccharides on adherence to human tracheal cells. J Med Microbiol 47:129–134
    [Google Scholar]
  42. Mutharia L. M., Hancock R. E. 1983; Surface localization of Pseudomonas aeruginosa outer membrane porin protein F by using monoclonal antibodies. Infect Immun 42:1027–1033
    [Google Scholar]
  43. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2002; GeneChipR expression analysis of the iron starvation response in Pseudomonas aeruginosa : identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287
    [Google Scholar]
  44. Ohman D. E., Chakrabarty A. M. 1981; Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun 33:142–148
    [Google Scholar]
  45. Panjwani N., Zhao Z., Raizman M. B., Jungalwala F. 1996; Pathogenesis of corneal infection: binding of Pseudomonas aeruginosa to specific phospholipids. Infect Immun 64:1819–1825
    [Google Scholar]
  46. Parsek M. R., Singh P. K. 2003; Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701
    [Google Scholar]
  47. Pier G. B., Coleman F., Grout M., Franklin M., Ohman D. E. 2001; Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901
    [Google Scholar]
  48. Ramsey D. M., Wozniak D. J. 2005; Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322
    [Google Scholar]
  49. Schagger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  50. Schuster M., Greenberg E. P. 2006; A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa . Int J Med Microbiol 296:73–81
    [Google Scholar]
  51. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079
    [Google Scholar]
  52. Schuster M., Hawkins A. C., Harwood C. S., Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985
    [Google Scholar]
  53. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858
    [Google Scholar]
  54. Simpson J. A., Smith S. E., Dean R. T. 1989; Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med 6:347–353
    [Google Scholar]
  55. Skaar E. P., Tobiason D. M., Quick J., Judd R. C., Weissbach H., Etienne F., Brot N., Seifert H. S. 2002; The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci U S A 99:10108–10113
    [Google Scholar]
  56. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492
    [Google Scholar]
  57. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  58. Tielker D., Hacker S., Loris R., Strathmann M., Wingender J., Wilhelm S., Rosenau F., Jaeger K. E. 2005; Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323
    [Google Scholar]
  59. van der Vliet A., Eiserich J. P., Marelich G. P., Halliwell B., Cross C. E. 1997; Oxidative stress in cystic fibrosis: does it occur and does it matter?. Adv Pharmacol 38:491–513
    [Google Scholar]
  60. Venturi V. 2006; Regulation of quorum sensing in Pseudomonas . FEMS Microbiol Rev 30:274–291
    [Google Scholar]
  61. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095
    [Google Scholar]
  62. Wagner V. E., Frelinger J. G., Barth R. K., Iglewski B. H. 2006; Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 14:55–58
    [Google Scholar]
  63. Waite R. D., Paccanaro A., Papakonstantinopoulou A., Hurst J. M., Saqi M., Littler E., Curtis M. A. 2006; Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7:162
    [Google Scholar]
  64. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864
    [Google Scholar]
  65. Winklhofer-Roob B. M., Ziouzenkova O., Puhl H., Ellemunter H., Greiner P., Muller G., Van't Hof M. A., Esterbauer H., Shmerling D. H. 1995; Impaired resistance to oxidation of low density lipoprotein in cystic fibrosis: improvement during vitamin E supplementation. Free Radic Biol Med 19:725–733
    [Google Scholar]
  66. Wolfgang M. C., Jyot J., Goodman A. L., Ramphal R., Lory S. 2004; Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci U S A 101:6664–6668
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011429-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011429-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error