1887

Abstract

Dihydroxyacetone synthase (DHAS) is a key enzyme involved in the assimilation of methanol in sp. strain JC1 DSM 3803. The structural gene encoding DHAS in sp. strain JC1 was cloned using random-primed probes synthesized after PCR with synthetic primers based on the amino acid sequences conserved in two yeast DHASs and several transketolases. The cloned gene, , had an ORF of 2193 nt, encoding a protein with a calculated molecular mass of 78 197 Da. The deduced amino acid sequence of contained an internal sequence of sp. strain JC1 DHAS and exhibited 29.2 and 27.3 % identity with those of and enzymes, respectively. transformed with the cloned gene produced a novel protein with a molecular mass of ∼78 kDa, which cross-reacted with anti-DHAS antiserum and exhibited DHAS activity. Primer-extension analysis revealed that the transcriptional start site of the gene was the nucleotide A located 31 bp upstream from the start codon. RT-PCR showed that was transcribed as a monocistronic message. Northern hybridization and -galactosidase assay with the putative promoter region of revealed that the gene was transcribed only in cells growing on methanol. The expression of in sp. strain JC1 was free from catabolite repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011965-0
2007-12-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4174.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011965-0&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 The Biochemistry of Methylotrophs New York: Academic Press;
  2. Bashyam M. D., Kaushal D., Dasgupta S. K., Tyagi A. K. 1996; A study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J Bacteriol 178:4847–4853
    [Google Scholar]
  3. Bystrykh L. V., Sokolov A. V., Trotsenko Y. A. 1981; Purification and properties of dihydroxyacetone synthase from the methylotrophic yeast Candida boidinii . FEBS Lett 132:324–328
    [Google Scholar]
  4. Chen J. H., Gibson J. L., McCues A. L., Tabita F. R. 1991; Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II CO2 fixation operon of Rhodobacter sphaeroides . J Biol Chem 266:20447–20452
    [Google Scholar]
  5. de Koning W., Harder W. 1992; Methanol-utilizing yeast. In Methane and Methanol Utilizers pp 207–244 Edited by Murrell J. C., Dalton H. New York: Plenum Press;
    [Google Scholar]
  6. Dijkhuizen L., Levering P. R., de Vries G. E. 1992; The physiology and biochemistry of aerobic methanol-utilizing Gram-negative and Gram-positive bacteria. In Methane and Methanol Utilizers pp 149–181 Edited by Murrell J. C., Dalton H. New York: Plenum Press;
    [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  8. Edman P., Begg G. 1967; A protein sequenator. Eur J Biochem 1:80–91
    [Google Scholar]
  9. Fletcher T. S., Kwee I. L., Nakada T., Largman C., Martin B. M. 1992; DNA sequence of the yeast transketolase gene. Biochemistry 31:1892–1896
    [Google Scholar]
  10. Goldberg J. B., Ohman D. E. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121
    [Google Scholar]
  11. Hawkins C. F., Borges A., Perham R. N. 1989; A common structural motif in thiamine pyrophosphate-binding enzymes. FEBS Lett 255:77–82
    [Google Scholar]
  12. Janowicz Z. A., Eckart M. R., Drewke C., Roggenkamp R. O., Hollenberg C. P. 1985; Cloning and characterization of DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha . Nucleic Acids Res 13:3043–3062
    [Google Scholar]
  13. Kato N., Nishizawa T., Sakazawa C., Tani Y., Yamada H. 1979; Xylulose 5-phosphate dependent fixation of formaldehyde in a methanol-utilizing yeast Kloeckera sp. no. 2201. Agric Biol Chem 43:2013–2015
    [Google Scholar]
  14. Kato N., Higuchi T., Sakazawa C., Nishizawa T., Tani Y., Yamada H. 1982; Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol utilizing yeast, Candida boidinii ( Kloeckera sp.) no. 2201. Biochim Biophys Acta 715:143–150
    [Google Scholar]
  15. Kim Y. M., Hegeman G. D. 1981; Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxyhydrogena . J Bacteriol 148:904–911
    [Google Scholar]
  16. Kim K. S., Ro Y. T., Kim Y. M. 1989; Purification and some properties of carbon monoxide dehydrogenase from Acinetobacter sp. strain JC1 DSM 3803. J Bacteriol 171:958–964
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  18. Lindqvist Y., Schneider G., Ermler U., Sundström M. 1992; Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å resolution. EMBO J 11:2373–2379
    [Google Scholar]
  19. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  20. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  21. Nathan S. H., Gomez J. E., Ko C., Bishi W. R. 1995; Color selection with a hygromycin-resistance-based Escherichia coli -mycobacterial shuttle vector. Gene 127:181–182
    [Google Scholar]
  22. Ni X., Westpheling J. 1997; Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci U S A 94:13116–13121
    [Google Scholar]
  23. O'Connor M. L., Quayle J. R. 1980; Pentose phosphate-dependent fixation of formaldehyde by methanol-grown Hansenula polymorpha and Candida boidinii . J Gen Microbiol 120:219–225
    [Google Scholar]
  24. Park S. W., Hwang E. H., Park H., Kim J. A., Heo J. H., Lee K. H., Song T., Kim E., Ro Y. T. other authors 2003; Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol 185:142–147
    [Google Scholar]
  25. Promega 1995 Technical Bulletin. Instructions for Use of Product E3030 Madison, WI: Promega;
  26. Reizer J., Reizer A., Bairoch A., Saier M. H. 1993; A diverse transketolase family that induces the RecP protein of Streptococcus pneumoniae , a protein implicated in genetic recombination. Res Microbiol 144:341–347
    [Google Scholar]
  27. Ro Y. T., Eom C. Y., Song T., Cho J. W., Kim Y. M. 1997a; Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. J Bacteriol 179:6041–6047
    [Google Scholar]
  28. Ro Y. T., Seo J. G., Lee J., Kim D. M., Chung I. K., Kim T. U., Kim Y. M. 1997b; Growth on methanol of a carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. J Microbiol 35:30–39
    [Google Scholar]
  29. Robinson B. H., Chun K. 1993; The relationships between transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase of pyruvate dehydrogenase complex. FEBS Lett 328:99–102
    [Google Scholar]
  30. Sakai Y., Nakagawa T., Shimase M., Kato N. 1998; Regulation and physiological role of the DAS1 gene, encoding dihydroxyacetone synthase, in the methylotrophic yeast Candida boidinii . J Bacteriol 180:5885–5890
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning : a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  33. Schäferjohann J., Yoo J. G., Kusian B., Bowien B. 1993; The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol 175:7329–7340
    [Google Scholar]
  34. Song T., Lee H., Park Y.-H., Kim E., Ro Y. T., Kim S. W., Kim Y. M. 2002; Reclassification of a carboxydobacterium, Acinetobacter sp.strain JC1 DSM 3803, as Mycobacterium sp. strain JC1 DSM 3803. J Microbiol 40:237–240
    [Google Scholar]
  35. Sundström M., Lindqvist Y., Schneider G., Hellman U., Ronne H. 1993; Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J Biol Chem 268:24346–24352
    [Google Scholar]
  36. Waites M. J., Quayle J. R. 1980; Dihydroxyacetone: a product of xylulose 5-phosphate-dependent fixation of formaldehyde by methanol-grown Candida boidinii . J Gen Microbiol 118:321–327
    [Google Scholar]
  37. Waites M. J., Quayle J. R. 1981; The interrelation between transketolase and dihydroxyacetone synthase activities in the methylotrophic yeast Candida boidinii . J Gen Microbiol 124:309–316
    [Google Scholar]
  38. Wang J. J., Martin P. R., Singleton C. K. 1997; Aspartate 155 of human transketolase is essential for thiamine diphosphate–magnesium binding, and cofactor binding is required for dimer formation. Biochim Biophys Acta 1341165–172
    [Google Scholar]
  39. Weber K., Osborn M. 1969; The reliability of molecular weight determination by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011965-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011965-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error