1887

Abstract

Exopolysaccharide and several extracellular enzymes of pv. campestris (Xcc), the causative agent of black rot in crucifers, are virulence factors. In this study, sequence and mutational analysis has demonstrated that Xcc encodes the major polygalacturonase, a member of family 28 of the glycosyl hydrolases. Using the 5′ RACE (rapid amplification of cDNA ends) method, the transcription initiation site was mapped at 102 nt downstream of a Clp (cAMP receptor protein-like protein)-binding site. Transcriptional fusion assays showed that transcription is greatly induced by polygalacturonic acid, positively regulated by Clp and RpfF (an enoyl-CoA hydratase homologue which is required for the synthesis of -11-methyl-2-dodecenoic acid, a low-molecular-mass diffusible signal factor), subjected to catabolite repression, which is independent of Clp or RpfF, and repressed under conditions of oxygen limitation or nitrogen starvation. Our findings extend previous work on Clp and RpfF regulation to show that they both influence the expression of in Xcc.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012930-0
2008-03-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/705.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012930-0&mimeType=html&fmt=ahah

References

  1. Barber C. E., Tang J. L., Feng J. X., Pan M. Q., Wilson T. J., Slater H., Dow J. M., Williams P., Daniels M. J. 1997; A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566
    [Google Scholar]
  2. Berg O. G., von Hippel P. H. 1988; Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J Mol Biol 200:709–723
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Bussink H. J., Buxton F. P., Visser J. 1991; Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II. Curr Genet 19:467–474
    [Google Scholar]
  5. Chan J. W., Goodwin P. H. 1999; The molecular genetics of virulence of Xanthomonas campestris . Biotechnol Adv 17:489–508
    [Google Scholar]
  6. Chang K. W., Weng S. F., Tseng Y. H. 2001; UDP-glucose dehydrogenase gene of Xanthomonas campestris is required for virulence. Biochem Biophys Res Commun 287:550–555
    [Google Scholar]
  7. Chiang S. H. 2004 The specificity study of the two rpoN genes in Xanthomonas campestris pv.campestris Master's thesis Department of Biotechnology and Bioinformatics, Asia University; Taichung:
    [Google Scholar]
  8. Chien H. L. 2006 Regulation of pglA gene of plant pathogenic Xanthomonas campestris pv. campestris Master's thesis Institute of Molecular Biology, Chung Hsing University; Taichung:
    [Google Scholar]
  9. Chou F. L., Chou H. C., Lin Y. S., Yang B. Y., Lin N. T., Weng S. F., Tseng Y. H. 1997; The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun 233:265–269
    [Google Scholar]
  10. da Silva A. C., Ferro J. A., Reinach F. C., Farah C. S., Furlan L. R., Quaggio R. B., Monteiro-Vitorello C. B., Van Sluys M. A., Almeida N. F. other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463
    [Google Scholar]
  11. Davies G., Henrissat B. 1995; Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859
    [Google Scholar]
  12. de Crecy-Lagard V., Glaser P., Lejeune P., Sismeiro O., Barber C. E., Daniels M. J., Danchin A. 1990; A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J Bacteriol 172:5877–5883
    [Google Scholar]
  13. de Crombrugghe B., Busby S., Buc H. 1984; Cyclic AMP receptor protein: role in transcription activation. Science 224:831–838
    [Google Scholar]
  14. Dong Q., Ebright R. H. 1992; DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein. J Bacteriol 174:5457–5461
    [Google Scholar]
  15. Dow J. M., Scofield G., Trafford K., Turner P. C., Daniels M. J. 1987; A gene cluster in Xanthomonas campestris pv. campestris required for pathogenicity controls the excretion of polygalacturonate lyase and other enzymes. Physiol Mol Plant Pathol 31:261–271
    [Google Scholar]
  16. Dow J. M., Milligan D. E., Jamieson L., Barber C. E., Daniels M. J. 1989; Molecular cloning of a polygalacturonate lyase gene from Xanthomonas campestris pv. campestris and role of the gene product in pathogenicity. Physiol Mol Plant Pathol 35:113–120
    [Google Scholar]
  17. Dow J. M., Feng J. X., Barber C. E., Tang J. L., Daniels M. J. 2000; Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris . Microbiology 146:885–891
    [Google Scholar]
  18. Dums F., Dow J. M., Daniels M. J. 1991; Structural characterization of protein secretion genes of the bacterial phytopathogen Xanthomonas campestris pathovar campestris: relatedness to secretion systems of other gram-negative bacteria. Mol Gen Genet 229:357–364
    [Google Scholar]
  19. Frohman M. A. 1993; Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218:340–356
    [Google Scholar]
  20. Fu J. F., Tseng Y. H. 1990; Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microbiol 56:919–923
    [Google Scholar]
  21. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  22. He Y. W., Xu M., Lin K., Ng Y. J., Wen C. M., Wang L. H., Liu Z. D., Zhang H. B., Dong Y. H. other authors 2006; Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 59:610–622
    [Google Scholar]
  23. He Y. W., Ng A. Y., Xu M., Lin K., Wang L. H., Dong Y. H., Zhang L. H. 2007; Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64:281–292
    [Google Scholar]
  24. Herlache T. C., Hotchkiss A. T. Jr, Burr T. J., Collmer A. 1997; Characterization of the Agrobacterium vitis pehA gene and comparison of the encoded polygalacturonase with the homologous enzymes from Erwinia carotovora and Ralstonia solanacearum . Appl Environ Microbiol 63:338–346
    [Google Scholar]
  25. Hsiao Y. M., Tseng Y. H. 2002; Transcription of Xanthomonas campestris prt1 gene encoding protease 1 increases during stationary phase and requires global transcription factor Clp. Biochem Biophys Res Commun 295:43–49
    [Google Scholar]
  26. Hsiao Y. M., Liao H. Y., Lee M. C., Yang T. C., Tseng Y. H. 2005; Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Lett 579:3525–3533
    [Google Scholar]
  27. Huang J. H., Schell M. A. 1990; DNA sequence analysis of pglA and mechanism of export of its polygalacturonase product from Pseudomonas solanacearum . J Bacteriol 172:3879–3887
    [Google Scholar]
  28. Hugouvieux-Cotte-Pattat N., Condemine G., Nasser W., Reverchon S. 1996; Regulation of pectinolysis in Erwinia chrysanthemi . Annu Rev Microbiol 50:213–257
    [Google Scholar]
  29. Hugouvieux-Cotte-Pattat N., Shevchik V. E., Nasser W. 2002; PehN, a polygalacturonase homologue with a low hydrolase activity, is coregulated with the other Erwinia chrysanthemi polygalacturonases. J Bacteriol 184:2664–2673
    [Google Scholar]
  30. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  31. Lee T. C., Chen S. T., Lee M. C., Chang C. M., Chen C. H., Weng S. F., Tseng Y. H. 2001; The early stages of filamentous phage φ Lf infection require the host transcription factor, Clp. J Mol Microbiol Biotechnol 3:471–481
    [Google Scholar]
  32. Liu Y., Chatterjee A., Chatterjee A. K. 1994; Nucleotide sequence and expression of a novel pectate lyase gene ( pel-3 ) and a closely linked endopolygalacturonase gene ( peh-1 ) of Erwinia carotovora subsp. carotovora 71. Appl Environ Microbiol 60:2545–2552
    [Google Scholar]
  33. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Monteiro-Vitorello C. B., Camargo L. E., Van Sluys M. A., Kitajima J. P., Truffi D., do Amaral A. M., Harakava R., de Oliveira J. C., Wood D. other authors 2004; The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli . Mol Plant Microbe Interact 17:827–836
    [Google Scholar]
  35. Nasser W., Shevchik V. E., Hugouvieux-Cotte-Pattat N. 1999; Analysis of three clustered polygalacturonase genes in Erwinia chrysanthemi 3937 revealed an anti-repressor function for the PecS regulator. Mol Microbiol 34:641–650
    [Google Scholar]
  36. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  37. Qian W., Jia Y., Ren S. X., He Y. Q., Feng J. X., Lu L. F., Sun Q., Ying G., Tang D. J. other authors 2005; Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767
    [Google Scholar]
  38. Ried J. L., Collmer A. 1985; Activity stain for rapid characterization of pectic enzymes in isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. Appl Environ Microbiol 50:615–622
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  41. Schweizer H. D. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834
    [Google Scholar]
  42. Slater H., Alvarez-Morales A., Barber C. E., Daniels M. J., Dow J. M. 2000; A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris . Mol Microbiol 38:986–1003
    [Google Scholar]
  43. Soby S. D., Daniels M. J. 1996; Catabolite-repressor-like protein regulates the expression of a gene under the control of the Escherichia coli lac promoter in the plant pathogen Xanthomonas campestris pv. campestris. Appl Microbiol Biotechnol 46:559–561
    [Google Scholar]
  44. Tang J. L., Liu Y. N., Barber C. E., Dow J. M., Wootton J. C., Daniels M. J. 1991; Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet 226:409–417
    [Google Scholar]
  45. Thieme F., Koebnik R., Bekel T., Berger C., Boch J., Buttner D., Caldana C., Gaigalat L., Goesmann A. other authors 2005; Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187:7254–7266
    [Google Scholar]
  46. Tseng Y. H., Choy K. T., Hung C. H., Lin N. T., Liu J. Y., Lou C. H., Yang B. Y., Wen F. S., Weng S. F., Wu J. R. 1999; Chromosome map of Xanthomonas campestris pv. campestris 17 with locations of genes involved in xanthan gum synthesis and yellow pigmentation. J Bacteriol 181:117–125
    [Google Scholar]
  47. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194
    [Google Scholar]
  48. Wang T. W., Tseng Y. H. 1992; Electrotransformation of Xanthomonas campestris by RF DNA of filamentous phage φ Lf. Lett Appl Microbiol 14:65–68
    [Google Scholar]
  49. Wang L. H., He Y., Gao Y., Wu J. E., Dong Y. H., He C., Wang S. X., Weng L. X., Xu J. L. other authors 2004; A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912
    [Google Scholar]
  50. Williams P. H. 1980; Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742
    [Google Scholar]
  51. Wilson T. J., Bertrand N., Tang J. L., Feng J. X., Pan M. Q., Barber C. E., Dow J. M., Daniels M. J. 1998; The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol Microbiol 28:961–970
    [Google Scholar]
  52. Yang B. Y., Tseng Y. H. 1988; Production of exopolysaccharide and levels of protease and pectinase activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris. Bot Bull Acad Sin 29:93–99
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012930-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012930-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error