1887

Abstract

pv. citri () causes citrus canker and the completion of the genome sequence has opened up the possibility of investigating basic cellular mechanisms at the genomic level. Copper compounds have been extensively used in agriculture to control plant diseases. The and genes, identified by annotation of the genome, encode homologues of proteins involved in copper resistance. A gene expression assay by Northern blotting revealed that and are expressed as a unique transcript specifically induced by copper. Synthesis of the gene products was also induced by copper, reaching a maximum level at 4 h after addition of copper to the culture medium. CopA was a cytosolic protein and CopB was detected in the cytoplasmic membrane. The gene encoding CopA was disrupted by the insertion of a transposon, leading to mutant strains that were unable to grow in culture medium containing copper, even at the lowest CuSO concentration tested (0.25 mM), whereas the wild-type strain was able to grow in the presence of 1 mM copper. Cell suspensions of the wild-type and mutant strains in different copper concentrations were inoculated in lemon leaves to analyse their ability to induce citrus canker symptoms. Cells of mutant strains showed higher sensitivity than the wild-type strain in the presence of copper, i.e. they were not able to induce citrus canker symptoms at high copper concentrations and exhibited a more retarded growth .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013821-0
2008-02-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/402.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013821-0&mimeType=html&fmt=ahah

References

  1. Basim H., Minsavage G. V., Stall R. E., Wang J. F., Shanker S., Jones J. B. 2005; Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 71:8284–8291
    [Google Scholar]
  2. Berks B. C., Palmer T., Sargent F. 2003; The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254
    [Google Scholar]
  3. Bronstein P. A., Marrichi M., Cartinhour S., Schneider D. J., DeLisa M. P. 2005; Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J Bacteriol 187:8450–8461
    [Google Scholar]
  4. Brown N. L., Barrett S. R., Camakaris J., Lee B. T. O., Rouch D. A. 1995; Molecular genetics and transport analysis on the copper-resistance determinant ( pco ) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166
    [Google Scholar]
  5. Caldelari I., Mann S., Crooks C., Palmer T. 2006; The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence. Mol Plant Microbe Interact 19:200–212
    [Google Scholar]
  6. Cha J. S., Cooksey D. A. 1991; Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A 88:8915–8919
    [Google Scholar]
  7. Cooksey D. A. 1987; Characterization of a copper resistance plasmid conserved in copper-resistant strains of Pseudomonas syringae pv. tomato. Appl Environ Microbiol 53:454–456
    [Google Scholar]
  8. Cooksey D. A., Azad H. R., Cha J. S., Lim C. K. 1990; Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol 56:431–435
    [Google Scholar]
  9. da Silva A. C. R., Ferro J. A., Reinach F. C., Farah C. S., Furlan L. R., Quaggio R. B., Monteiro-Vitorello C. B., Van Sluys M. A., Almeida N. F. other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463
    [Google Scholar]
  10. Dann C. E. III, Wakeman C. A., Sieling C. L., Baker S. C., Irnov I., Winkler W. C. 2007; Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892
    [Google Scholar]
  11. Feil H., Feil W. S., Chain P., Larimer F., DiBartolo G., Copeland A., Lykidis A., Trong S., Nolan M. other authors 2005; Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102:11064–11069
    [Google Scholar]
  12. Franke S., Grass G., Rensing C., Nies D. H. 2003; Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli . J Bacteriol 185:3804–3812
    [Google Scholar]
  13. Grass G., Rensing C. 2001; CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli . Biochem Biophys Res Commun 286:902–908
    [Google Scholar]
  14. Katzen F., Becker A., Zorreguieta A., Puhler A., Ielpi L. 1996; Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 178:4313–4318
    [Google Scholar]
  15. Khodursky A. B., Bernstein J. A., Peter B. J., Rhodius V., Wendisch V. F., Zimmer D. P. 2003; Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. Methods Mol Biol 224:61–78
    [Google Scholar]
  16. Lee Y. A., Hendson M., Panapoulos N. J., Schroth M. N. 1994; Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188
    [Google Scholar]
  17. Lee H. M., Tyan S. W., Leu W. M., Chen L. Y., Chen D. C., Hu N. T. 2001; Involvement of the XpsN protein in formation of the XpsL-XpsM complex in Xanthomonas campestris pv. campestris type II secretion apparatus. J Bacteriol 183:528–535
    [Google Scholar]
  18. Mellano M. A., Cooksey D. A. 1988; Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 170:2879–2883
    [Google Scholar]
  19. Messerschmidt A., Rossi A., Ladenstein R., Huber R., Bolognesi M., Gatti G., Marchesini A., Petruzzelli R., Finazzi-Agró A. 1989; X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol 206:513–529
    [Google Scholar]
  20. Mills S. D., Lim C. K., Cooksey D. A. 1994; Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain ( cop box) in copper-inducible promoters of Pseudomonas syringae . Mol Gen Genet 244:341–351
    [Google Scholar]
  21. Munson G. P., Lam D. L., Outten F. W., O'Halloran T. V. 2000; Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871
    [Google Scholar]
  22. Outten F. W., Outten C. E., Hale J., O'Halloran T. V. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue. CueR. J Biol Chem 275:31024–31029
    [Google Scholar]
  23. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276:30670–30677
    [Google Scholar]
  24. Rensing C., Grass G. 2003; Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213
    [Google Scholar]
  25. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 2000; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656
    [Google Scholar]
  26. Rouch D. A., Brown N. L. 1997; Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco . Microbiology 143:1191–1202
    [Google Scholar]
  27. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Mannual , 3rd edn. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory;
  28. Simpson A. J. G., Reinach F. C., Arruda P., Abreu F. A., Acencio M., Alvarenga R., Alves L. M. C., Araya J. E., Baia G. S. other authors 2000; The genome sequence of the plant pathogen Xylella fastidiosa . The Xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis. Nature 406:151–157
    [Google Scholar]
  29. Sun Q., Wu W., Qian W., Hu J., Fang R., He C. 2003; High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett 226:145–150
    [Google Scholar]
  30. Voloudakis A. E., Reignier T. M., Cooksey D. A. 2005; Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 71:782–789
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013821-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013821-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error