1887

Abstract

The bacterial version of the mammalian signal recognition particle (SRP) is well conserved and essential to all known bacteria. The genes for the SRP components have been cloned and characterized. FtsY resembles the mammalian SRP receptor and the SRP consists of Ffh, a homologue of the mammalian SRP54 protein, and scRNA, which is a small size RNA of 82 nt in length. Co-immunoprecipitation studies confirmed that Ffh and scRNA are probably the only components of the SRP and that pre-agarase can co-immunoprecipitate with Ffh, suggesting that the SRP is involved in targeting secretory proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26313-0
2003-09-01
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492435.html?itemId=/content/journal/micro/10.1099/mic.0.26313-0&mimeType=html&fmt=ahah

References

  1. Barthelemy I., Salas M., Mellado R. P. 1986; In vivo transcription of bacteriophage ϕ 29 DNA: transcription initiation sites. J Virol 60:874–879
    [Google Scholar]
  2. Batey R. T., Rambo R. P., Lucast L., Rha B., Doudna J. A. 2000; Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232–1239
    [Google Scholar]
  3. Beck K., Wu L. F., Brunner J., Muller M. 2000; Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19:134–143
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Bui N., Strub K. 1999; New insights into signal recognition and elongation arrest activities of the signal recognition particle. Biol Chem 380:135–145
    [Google Scholar]
  6. Bunai K., Takamatsu H., Horinaka T., Oguro A., Nakamura K., Yamane K. 1996; Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem Biophys Res Commun 227:762–767
    [Google Scholar]
  7. Chater K. F. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478
    [Google Scholar]
  8. Christie G. E., Calendar R. 1983; Bacteriophage P2 late promoters. Transcription initiation sites form two late mRNAs. J Mol Biol 167:773–790
    [Google Scholar]
  9. Dunbar B. S., Schwoebel E. D. 1990; Preparation of polyclonal antibodies. Methods Enzymol 182:663–670
    [Google Scholar]
  10. Gilbert M., Morosoli R., Shareck F., Kluepfel D. 1995; Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol 15:13–39
    [Google Scholar]
  11. Harwood C. R., Cutting S. M. 1990 Molecular Biological Methods for Bacillus Chichester, UK: Wiley;
  12. Herskovits A. A., Bochkareva E., Bibi E. 2000; New prospects in studying the bacterial signal recognition particle pathway. Mol Microbiol 38:927–939
    [Google Scholar]
  13. Hopwood D. A., Bibb M. J., Chater K. F., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces . A Laboratory Manual Norwich, UK: John Innes Foundation;
    [Google Scholar]
  14. Kedzierski W., Porter J. C. 1991; A novel non-enzymatic procedure for removing DNA template from RNA transcription mixtures. Biotechniques 10:210–214
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Mellado R. P., Barthelemy I., Salas M. 1986; In vivo transcription of bacteriophage ϕ 29 DNA early and late promoter sequences. J Mol Biol 191:191–197
    [Google Scholar]
  17. Murray N. E. 1983; Phage lambda and molecular cloning. In Lambda II pp 398–432 Edited by Hendrix R. W., Roberts J. W., Stahl F. W., Weisberg R. A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Nakamura K., Yahagi S., Yamazaki T., Yamane K. 1999; Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem 274:13569–13576
    [Google Scholar]
  19. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  20. Oguro A., Kakeshita H., Takamatsu H., Nakamura K., Yamane K. 1996; The effect of Srb, a homologue of the mammalian SRP receptor alpha-subunit, on Bacillus subtilis growth and protein translocation. Gene 172:17–24
    [Google Scholar]
  21. Palacín A., Parro V., Geukens N., Anné J., Mellado R. P. 2002; SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol 184:4875–4880
    [Google Scholar]
  22. Parro V., Mellado R. P. 1994; Effect of glucose on agarase overproduction by Streptomyces . Gene 145:49–55
    [Google Scholar]
  23. Parro V., Hopwood D. A., Malpartida F., Mellado R. P. 1991; Transcription of genes involved in the earliest steps of actinorhodin biosynthesis in Streptomyces coelicolor . Nucleic Acids Res 19:2623–2627
    [Google Scholar]
  24. Parro V., Mellado R. P., Harwood C. R. 1998; Effect of phosphate limitation on agarase production by Streptomyces lividans TK21. FEMS Microbiol Lett 158:107–113
    [Google Scholar]
  25. Parro V., Schacht S., Anné J., Mellado R. P. 1999; Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145:2255–2263
    [Google Scholar]
  26. Powers T., Walter P. 1997; Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J 16:4880–4886
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  29. Sprengart M. L., Fuchs E., Porter A. G. 1996; The downstream box: an efficient and independent translation initiation signal in Escherichia coli . EMBO J 15:665–674
    [Google Scholar]
  30. Timmons T. M., Dunbar B. S. 1990; Protein blotting and immunodetection. Methods Enzymol 182:679–688
    [Google Scholar]
  31. Tjalsma H., Bolhuis A., van Roosmalen M. L. 7 other authors 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis : identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331
    [Google Scholar]
  32. Van Mellaert L., Anné J. 1994; Protein secretion in Gram-positive bacteria with high GC-content. Recent Res Dev Microbiol 3:324–340
    [Google Scholar]
  33. Villarejo M. R., Zabin I. 1974; β -Galactosidase from termination and deletion mutant strains. J Bacteriol 120:466–474
    [Google Scholar]
  34. Walter P., Johnson A. E. 1994; Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10:87–119
    [Google Scholar]
  35. Wolin S. L. 1994; From the elephant to E. coli : SRP-dependent protein targeting. Cell 77:787–790
    [Google Scholar]
  36. Wu C. J., Janssen G. R. 1996; Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of 5′ untranslated leader. Mol Microbiol 22:339–355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26313-0
Loading
/content/journal/micro/10.1099/mic.0.26313-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error