1887

Abstract

The role of type I signal peptidases (SPases I) is to remove the signal peptides of preproteins exported by the general secretory pathway. The genome of contains a locus encoding three contiguous SPases I (denoted SipX, SipY and SipZ). The authors recently showed that SipX and SipZ perform distinct functions in protein secretion and bacterial pathogenicity. Here, the regulation of gene expression in broth and in infected eukaryotic cells was studied. The results show that expression of the three genes is (i) controlled by two distinct promoter regions that respond differently to growth phase and temperature variations, and (ii) influenced by PrfA (the transcriptional activator regulating most of the virulence genes of ) and the stress proteins ClpC and ClpP. It was found that gene expression was strongly upregulated upon infection of eukaryotic cells when bacteria were still entrapped in the phagosomal compartment. This upregulation is compatible with the need of to optimize its production of virulence factors in the early stage of the intracellular cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28066-0
2005-11-01
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3769.html?itemId=/content/journal/micro/10.1099/mic.0.28066-0&mimeType=html&fmt=ahah

References

  1. Bockmann R., Dickneite C., Middendorf B., Goebel W., Sokolovic Z. 1996; Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22:643–653 [CrossRef]
    [Google Scholar]
  2. Bolhuis A., Tjalsma H., Stephenson K., Harwood C. R., Venema G., Bron S, van Dijl J. M. 1999; Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants. J Biol Chem 274:15865–15868 [CrossRef]
    [Google Scholar]
  3. Bonnemain C., Raynaud C., Réglier-Poupet H., Dubail I., Frehel C., Lety M. A., Berche P., Charbit A. 2004; Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes . Mol Microbiol 51:1251–1266 [CrossRef]
    [Google Scholar]
  4. Borezee E., Msadek T., Durant L., Berche P. 2000; Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein. J Bacteriol 182:5931–5934 [CrossRef]
    [Google Scholar]
  5. Bubert A., Sokolovic Z., Chun S. K., Papatheodorou L., Simm A., Goebel W. 1999; Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261:323–336
    [Google Scholar]
  6. Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P. 2002; Surface proteins and the pathogenic potential of Listeria monocytogenes . Trends Microbiol 10:238–245 [CrossRef]
    [Google Scholar]
  7. Chastanet A., Fert J., Msadek T. 2003; Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol Microbiol 47:1061–1073 [CrossRef]
    [Google Scholar]
  8. Cossart P. 2004; Bacterial invasion: a new strategy to dominate cytoskeleton plasticity. Dev Cell 6:314–315 [CrossRef]
    [Google Scholar]
  9. Dussurget O., Pizarro-Cerda J., Cossart P. 2004; Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol 58:587–610 [CrossRef]
    [Google Scholar]
  10. Gaillot O., Pellegrini E., Bregenholt S., Nair S., Berche P. 2000; The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes . Mol Microbiol 35:1286–1294
    [Google Scholar]
  11. Glaser P., Frangeul L., Buchrieser C. 52 other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  12. Miller J. 1972; Assay of β -Galactosidase. In Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Milohanic E., Glaser P., Coppee J. Y., Frangeul L., Vega Y., Vazquez-Boland J. A., Kunst F., Cossart P., Buchrieser C. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625 [CrossRef]
    [Google Scholar]
  14. Nair S., Derre I., Msadek T., Gaillot O., Berche P. 2000; CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes . Mol Microbiol 35:800–811 [CrossRef]
    [Google Scholar]
  15. Paetzel M., Dalbey R. E., Strynadka N. C. 2000; The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 87:27–49 [CrossRef]
    [Google Scholar]
  16. Poyart C., Trieu-Cuot P. 1997; A broad host-range mobilizable shuttle vector for the construction of transcriptional fusions to β -galactosidase in Gram-positive bacteria. FEMS Microbiol Lett 156:193–198 [CrossRef]
    [Google Scholar]
  17. Pugsley A. P., Possot O. 1993; The general secretory pathway of Klebsiella oxytoca : no evidence for relocalization or assembly of pilin-like PulG protein into a multiprotein complex. Mol Microbiol 10:665–674 [CrossRef]
    [Google Scholar]
  18. Pummi T., Leskela S., Wahlstrom E., Gerth U., Tjalsma H., Hecker M., Sarvas M., Kontinen V. P. 2002; ClpXP protease regulates the signal peptide cleavage of secretory preproteins in Bacillus subtilis with a mechanism distinct from that of the Ecs ABC transporter. J Bacteriol 184:1010–1018 [CrossRef]
    [Google Scholar]
  19. Réglier-Poupet H., Frehel C., Dubail I., Beretti J. L., Berche P., Charbit A., Raynaud C. 2003; Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes . J Biol Chem 278:49469–49477 [CrossRef]
    [Google Scholar]
  20. Ripio M. T., Vazquez-Boland J. A., Vega Y., Nair S., Berche P. 1998; Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes . FEMS Microbiol Lett 158:45–50 [CrossRef]
    [Google Scholar]
  21. Sheehan B., Klarsfeld A., Ebright R., Cossart P. 1996; A single substitution in the putative helix-turn-helix motif of the pleiotropic activator PrfA attenuates Listeria monocytogenes virulence. Mol Microbiol 20:785–797 [CrossRef]
    [Google Scholar]
  22. Tjalsma H., Noback M. A., Bron S., Venema G., Yamane K., van Dijl J. M. 1997; Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992 [CrossRef]
    [Google Scholar]
  23. van Roosmalen M. L., Jongbloed J. D., Dubois J. Y., Venema G., Bron S., van Dijl J. M. 2001; Distinction between major and minor Bacillus signal peptidases based on phylogenetic and structural criteria. J Biol Chem 276:25230–25235 [CrossRef]
    [Google Scholar]
  24. van Roosmalen M. L., Geukens N., Jongbloed J. D., Tjalsma H., Dubois J. Y., Bron S., van Dijl J. M., Anne J. 2004; Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta 1694279–297 [CrossRef]
    [Google Scholar]
  25. van Wely K. H., Swaving J., Freudl R., Driessen A. J. 2001; Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454 [CrossRef]
    [Google Scholar]
  26. Vazquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Dominguez-Bernal G., Goebel W., Gonzalez-Zorn B. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 [CrossRef]
    [Google Scholar]
  27. Wawrzynow A., Banecki B., Zylicz M. 1996; The Clp ATPases define a novel class of molecular chaperones. Mol Microbiol 21:895–899 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28066-0
Loading
/content/journal/micro/10.1099/mic.0.28066-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error