1887

Abstract

is a facultative intracellular bacterial pathogen responsible for severe opportunistic infections in humans and animals. The secreted cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates phagosomal escape and allows bacterial growth in the cytosol of infected cells. In order to identify new LLO determinants participating in bacterial pathogenesis, this study focused on a major target of LLO proteolytic cleavage , the CTL epitope region (residues 91–99). Mutations were generated by site-directed mutagenesis in the epitope or in the two clusters of positive charges flanking the epitope. Two LLO mutants (a single mutation K103A and a double mutation R89G, K90G) were normally and stably secreted by . In contrast, a mutant carrying four amino acid substitutions in the epitope itself (Y92K, D94A, E97K, Y98F) was highly susceptible to proteolytic degradation. While these three LLO mutant proteins showed a reduced haemolytic activity, they all promoted efficient phagosomal escape and intracellular multiplication in different cell types, and were non-cytotoxic. The deletion of the epitope (Δ91–99), as well as the substitution of two, three or four of the four lysine residues (K103 to K106) by alanine residues did not lead to the production of a detectable protein. These results confirm the lack of correlation between haemolytic activity and phagosomal membrane disruption. They reveal the importance of the 91–99 region in the production of a stable and functional LLO. LD determinations in the mouse model suggest a possible link between LLO stability and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28754-0
2006-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1287.html?itemId=/content/journal/micro/10.1099/mic.0.28754-0&mimeType=html&fmt=ahah

References

  1. Alouf J. E. 2000; Cholesterol-binding cytolytic protein toxins. Int J Med Microbiol 290:351–356 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1990 In Current Protocols in Molecular Biology New York: Wiley Interscience;
    [Google Scholar]
  3. Barsig J., Kaufmann S. H. 1997; The mechanism of cell death in Listeria monocytogenes -infected murine macrophages is distinct from apoptosis. Infect Immun 65:4075–4081
    [Google Scholar]
  4. Beekman N. J. 7 other authors van Veelen P. A., van Hall T. 2000; Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site. J Immunol 164:1898–1905 [CrossRef]
    [Google Scholar]
  5. Berche P. 1995; Bacteremia is required for invasion of the murine central nervous system by Listeria monocytogenes . Microb Pathog 18:323–336 [CrossRef]
    [Google Scholar]
  6. Bonnemain C., Raynaud C., Reglier-Poupet H., Dubail I., Frehel C., Lety M. A., Berche P., Charbit A. 2004; Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes . Mol Microbiol 51:1251–1266 [CrossRef]
    [Google Scholar]
  7. Bubert A., Sokolovic Z., Chun S. K., Papatheodorou L., Simm A., Goebel W. 1999; Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261:323–336
    [Google Scholar]
  8. Busch D. H., Pamer E. G. 1998; MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J Immunol 160:4441–4448
    [Google Scholar]
  9. Busch D. H., Bouwer H. G., Hinrichs D., Pamer E. G. 1997; A nonamer peptide derived from Listeria monocytogenes metalloprotease is presented to cytolytic T lymphocytes. Infect Immun 65:5326–5329
    [Google Scholar]
  10. Charbit A., Boulain J. C., Ryter A., Hofnung M. 1986; Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope; expression at the cell surface. EMBO J 5:3029–3037
    [Google Scholar]
  11. Cossart P. 2002; Molecular and cellular basis of the infection by Listeria monocytogenes : an overview. Int J Med Microbiol 291:401–409
    [Google Scholar]
  12. Decatur A. L., Portnoy D. A. 2000; A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992–995 [CrossRef]
    [Google Scholar]
  13. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P. 1995; Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261 [CrossRef]
    [Google Scholar]
  14. Drevets D. A., Sawyer R. T., Potter T. A., Campbell P. A. 1995; Listeria monocytogenes infects human endothelial cells by two distinct mechanisms. Infect Immun 63:4268–4276
    [Google Scholar]
  15. Dubail I., Autret N., Beretti J. L., Kayal S., Berche P., Charbit A. 2001; Functional assembly of two membrane-binding domains in listeriolysin O, the cytolysin of Listeria monocytogenes . Microbiology 147:2679–2688
    [Google Scholar]
  16. Finelli A., Kerksiek K. M., Allen S. E., Marshall N., Mercado R., Pilip I., Busch D. H., Pamer E. G. 1999; MHC class I restricted T cell responses to Listeria monocytogenes , an intracellular bacterial pathogen. Immunol Res 19:211–223 [CrossRef]
    [Google Scholar]
  17. Frehel C., Lety M. A., Autret N., Beretti J. L., Berche P., Charbit A. 2003; Capacity of ivanolysin O to replace listeriolysin O in phagosomal escape and in vivo survival of Listeria monocytogenes . Microbiology 149:611–620 [CrossRef]
    [Google Scholar]
  18. Gaillard J. L., Berche P., Sansonetti P. 1986; Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes . Infect Immun 52:50–55
    [Google Scholar]
  19. Gaillard J. L., Jaubert F., Berche P. 1996; The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo. J Exp Med 183:359–369 [CrossRef]
    [Google Scholar]
  20. Garandeau C., Reglier-Poupet H., Dubail I., Beretti J. L., Berche P., Charbit A. 2002; The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect Immun 70:1382–1390 [CrossRef]
    [Google Scholar]
  21. Glomski I. J., Gedde M. M., Tsang A. W., Swanson J. A., Portnoy D. A. 2002; The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156:1029–1038 [CrossRef]
    [Google Scholar]
  22. Glomski I. J., Decatur A. L., Portnoy D. A. 2003; Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71:6754–6765 [CrossRef]
    [Google Scholar]
  23. Goebel W., Khun M. 2000; Bacterial replication in the host cell cytosol. Curr Opin Microbiol 3:49–53 [CrossRef]
    [Google Scholar]
  24. Guzman C. A., Rohde M., Chakraborty T., Domann E., Hudel M., Wehland J., Timmis K. N. 1995; Interaction of Listeria monocytogenes with mouse dendritic cells. Infect Immun 63:3665–3673
    [Google Scholar]
  25. Jacobs T., Darji A., Frahm N., Rohde M., Wehland J., Chakraborty T., Weiss S. 1998; Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 28:1081–1089 [CrossRef]
    [Google Scholar]
  26. Johansson J., Mandin P., Renzoni A., Chiaruttini C., Springer M., Cossart P. 2002; An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110:551–561 [CrossRef]
    [Google Scholar]
  27. Jones S., Portnoy D. A. 1994a; Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun 62:5608–5613
    [Google Scholar]
  28. Jones S., Portnoy D. A. 1994b; Intracellular growth of bacteria. Methods Enzymol 236:463–467
    [Google Scholar]
  29. Kuhn M., Goebel W. 1989; Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun 57:55–61
    [Google Scholar]
  30. Lety M. A., Frehel C., Dubail I., Beretti J. L., Kayal S., Berche P., Charbit A. 2001; Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence of Listeria monocytogenes . Mol Microbiol 39:1124–1140 [CrossRef]
    [Google Scholar]
  31. Lety M. A., Frehel C., Berche P., Charbit A. 2002; Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence of Listeria monocytogenes . Mol Microbiol 46:367–379 [CrossRef]
    [Google Scholar]
  32. Lety M. A., Frehel C., Beretti J. L., Berche P., Charbit A. 2003; Modification of the signal sequence cleavage site of listeriolysin O does not affect protein secretion but impairs the virulence of Listeria monocytogenes . Microbiology 149:1249–1255 [CrossRef]
    [Google Scholar]
  33. Mackaness G. B. 1962; Cellular resistance to infection. J Exp Med 116:381–406 [CrossRef]
    [Google Scholar]
  34. Moors M. A., Levitt B., Youngman P., Portnoy D. A. 1999; Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes . Infect Immun 67:131–139
    [Google Scholar]
  35. Pamer E. G. 1994; Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol 152:686–694
    [Google Scholar]
  36. Pamer E. G., Sijts A. J., Villanueva M. S., Busch D. H., Vijh S. 1997; MHC class I antigen processing of Listeria monocytogenes proteins: implications for dominant and subdominant CTL responses. Immunol Rev 158:129–136 [CrossRef]
    [Google Scholar]
  37. Park S. F., Stewart G. S. 1990; High efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94:129–132 [CrossRef]
    [Google Scholar]
  38. Portnoy D. A., Jacks P. S., Hinrichs D. J. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes . J Exp Med 167:1459–1471 [CrossRef]
    [Google Scholar]
  39. Renzoni A., Cossart P., Dramsi S. 1999; PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34:552–561 [CrossRef]
    [Google Scholar]
  40. Rossjohn J., Fell S. C., McKinstry W. J., Tweten R. K., Parker M. W. 1997; Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692 [CrossRef]
    [Google Scholar]
  41. Roth Z. 1961; A graphic probit method for the calculation of LD50 and relative toxicity. Cesk Fysiol 10:408–422
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989; Expression of cloned genes in Escherichia coli . In Molecular Cloning: a Laboratory Manual pp 17.37–17.41 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schuerch D. W., Wilson-Kubalek E. M., Tweten R. K. 2005; Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A 102:12537–12542 [CrossRef]
    [Google Scholar]
  44. Sijts A. J., Neisig A., Neefjes J., Pamer E. G. 1996; Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J Immunol 156:683–692
    [Google Scholar]
  45. Tweten R. K. 1988; Cloning and expression in Escherichia coli of the perfringolysin O (theta-toxin) gene from Clostridium perfringens and characterization of the gene product. Infect Immun 56:3228–3234
    [Google Scholar]
  46. Vazquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Dominguez-Bernal G., Goebel W., Gonzalez-Zorn B. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 [CrossRef]
    [Google Scholar]
  47. Vijh S., Pamer E. G. 1997; Immunodominant and subdominant CTL responses to Listeria monocytogenes infection. J Immunol 158:3366–3371
    [Google Scholar]
  48. Vijh S., Pilip I. M., Pamer E. G. 1999; Noncompetitive expansion of cytotoxic T lymphocytes specific for different antigens during bacterial infection. Infect Immun 67:1303–1309
    [Google Scholar]
  49. Villanueva M. S., Sijts A. J., Pamer E. G. 1995; Listeriolysin is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes -infected cells. J Immunol 155:5227–5233
    [Google Scholar]
  50. Yellen-Shaw A. J., Eisenlohr L. C. 1997; Regulation of class I-restricted epitope processing by local or distal flanking sequence. J Immunol 158:1727–1733
    [Google Scholar]
  51. Yellen-Shaw A. J., Wherry E. J., Dubois G. C., Eisenlohr L. C. 1997; Point mutation flanking a CTL epitope ablates in vitro and in vivo recognition of a full-length viral protein. J Immunol 158:3227–3234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28754-0
Loading
/content/journal/micro/10.1099/mic.0.28754-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error