1887

Abstract

Summary: A set of isogenic mutants of 168, insertionally inactivated in the genes encoding a number of lytic enzymes and a sigma factor (σ, which controls the expression of a number of autolysins) was constructed. Phenotypic analysis of the mutants determined the individual and combined roles of the autolysins in vegetative growth. The major vegetative autolysins of , LytC (50 kDa amidase) and LytD (90 kDa glucosaminidase), were shown to have roles in cell separation, cell wall turnover, antibiotic-induced lysis and motility. LytC was also shown to have a role in general cell lysis induced by sodium azide. Renaturing SDS-PAGE of cell-wall-binding protein extracts of the mutant strains revealed the presence of a novel autolysin that was previously masked by LytC. This 49 kDa enzyme was shown to be σ-controlled and was identified as a candidate cell separation and cell wall turnover enzyme. A multiple mutant strain, lacking LytC, LytD and the 49 kDa enzyme, retained at least ten bands of autolytic activity. These may correspond to individual or proteolytically processed novel autolysins, the functions of which are unknown. The multiple mutant strains facilitate the study of these, and other lytic enzymes, to determine their cellular functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-73
1998-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-73.html?itemId=/content/journal/micro/10.1099/00221287-144-1-73&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  2. Archibald A. R., Coapes H. E. 1976; Bacteriophage SP50 as a marker for cell wall growth in Bacillus subtilis . J Bacteriol 125:1195–1206
    [Google Scholar]
  3. Cheung H. Y., Freese E. 1985; Mono-valent cations enable cell-wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis . J Bacteriol 161:1222–1225
    [Google Scholar]
  4. Clarke-Sturman A. J., Archibald A. R., Hancock I. C., Harwood B. R., Merad T., Hobot J. A. 1989; Cell wall assembly in Bacillus subtilis: partial conservation of polar wall material and the effect of growth conditions on the pattern of incorporation of new material at the polar caps. J Gen Microbiol 135:657–665
    [Google Scholar]
  5. Cutting S. M., Vander Horn P. B. 1990; Genetic analysis. In Molecular Biology Methods for Bacillus pp 27–74 Edited by Harwood C. R., Cutting S. M. Chichester: John Wiley;
    [Google Scholar]
  6. Dijkstra A. J., Keck W. 1996; Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178:5555–5562
    [Google Scholar]
  7. Fein J. E. 1979; Possible involvement of bacterial autolysin enzymes in flagellar morphogenesis. J Bacteriol 137:933–946
    [Google Scholar]
  8. Fein J. E., Rogers H. J. 1976; Autolytic enzyme deficient mutants of Bacillus subtilis 168. J Bacteriol 127:1427–1442
    [Google Scholar]
  9. Fischer W., Rosel P., Koch H. U. 1981; Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus . J Bacteriol 146:467–475
    [Google Scholar]
  10. Forsberg C., Rogers H. J. 1971; Autolytic enzymes in growth of bacteria. Nature 229:272–273
    [Google Scholar]
  11. Foster S. J. 1991; Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2 . J Gen Microbiol 137:1987–1998
    [Google Scholar]
  12. Foster S. J. 1992; Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J Bacteriol 174:464–470
    [Google Scholar]
  13. Foster S. J. 1993; Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol Microbiol 8:299–310
    [Google Scholar]
  14. Fredrick K., Helmann J. D. 1996; FlgM is a primary regulator of σD activity, and its absence restores motility to a sinR mutant. J Bacteriol 178:7010–7013
    [Google Scholar]
  15. Gaur N. K., Dubnau E., Smith I. 1986; Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J Bacteriol 168:860–869
    [Google Scholar]
  16. Ghuysen J. -M., Tipper D. J., Strominger J. L. 1966; Enzymes that degrade bacterial cell walls. Methods Enzymol 8:685–699
    [Google Scholar]
  17. Hauser P. M., Errington J. 1995; Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis . J Bacteriol 177:3923–3931
    [Google Scholar]
  18. Helmann J. D., Màrquez L. M., Chamberlin M. J. 1988; Cloning, sequencing, and disruption of the Bacillus subtilis σ28 gene. J Bacteriol 170:1568–1574
    [Google Scholar]
  19. Herbold D. R., Glaser L. 1975; Bacillus subtilis N-acetylmuramic acid l-alanine amidase. J Biol Chem 250:1676–1682
    [Google Scholar]
  20. Jolliffe L. K., Doyle R. J., Streips U. N. 1980; Extracellular proteases modify cell wall turnover in Bacillus subtilis . J Bacteriol 141:1199–1208
    [Google Scholar]
  21. Jolliffe L. K., Doyle R. J., Streips U. N. 1981; The energised membrane and cellular autolysis in Bacillus subtilis . Cell 25:753–763
    [Google Scholar]
  22. Koch A. L., Kirchner G., Doyle R. J., Streips U. N. 1995; How does a Bacillus split its septum right down the middle?. Ann Inst Pasteur Microbiol 136:91–98
    [Google Scholar]
  23. Kuroda A., Sekiguchi J. 1991; Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 173:7304–7312
    [Google Scholar]
  24. Kuroda A., Sekiguchi J. 1993; High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin(flaD) mutation. J Bacteriol 175:795–801
    [Google Scholar]
  25. Kuroda A., Rashid M. H., Sekiguchi J. 1992; Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J Gen Microbiol 138:1067–1076
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  27. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  28. Lominski I., Cameron J., Wyllie G. 1958; Chaining and unchaining of Streptococcus faecalis: a hypothesis of the mechanism of bacterial separation. Nature 181:1477
    [Google Scholar]
  29. Margot P., Karamata D. 1992; Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol Gen Genet 232:358–366
    [Google Scholar]
  30. Margot P., Mauël C., Karamata D. 1994; The gene of the N-acetylglucosaminidase, a Bacillus subtilis cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545
    [Google Scholar]
  31. Pooley H., Karamata D. 1984; Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis . J Bacteriol 160:1123–1129
    [Google Scholar]
  32. Rashid M. H., Kuroda A., Sekiguchi J. 1993; Bacillus subtilis mutant deficient in the major autolytic amidase and glucosaminidase is impaired in motility. FEMS Microbiol Lett 112:135–140
    [Google Scholar]
  33. Rashid M. H., Mori H., Sekiguchi J. 1995; Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. Microbiology 141:2391–2404
    [Google Scholar]
  34. Rogers H. J., Thurman P. F., Burdett I. D. J. 1983; The bactericidal action of β-lactam antibiotics on an autolysin-deficient strain of Bacillus subtilis . J Gen Microbiol 129:465–478
    [Google Scholar]
  35. Rogers H. J., Taylor C., Rayter S., Ward J. B. 1984; Purification and properties of autolytic endo-β-N-acetylglucos-aminidase and the N-acetylmuramoyl-l-alanine amidase from Bacillus subtilis strain 168. J Gen Microbiol 130:2395–2402
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Smith T. J., Foster S. J. 1995; Characterisation of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J Bacteriol 177:3855–3862
    [Google Scholar]
  38. Smith T. J., Blackman S. A., Foster S. J. 1996; Peptidoglycan hydrolases of Bacillus subtilis 168. Microb Drug Resist 2:113–118
    [Google Scholar]
  39. Steinmetz M., Richter R. 1994; Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142:79–83
    [Google Scholar]
  40. Stewart G. S. A., B., Johnstone K., Hagelberg E., Ellar D. J. 1981; Commitment of bacterial spores to germinate. Biochem J 198:101–106
    [Google Scholar]
  41. Ward J. B., Williamson R. 1984; Bacterial autolysins: specificity and function. In Microbial Wall Synthesis and Function pp 159–166 Edited by Nombela C. Amsterdam: Elsevier;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-73
Loading
/content/journal/micro/10.1099/00221287-144-1-73
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error