1887

Abstract

SUMMARY

Although glycerol is not taken up via the phosphotransferase system (PTS) in , some mutations that affect the general components of the PTS impair the ability of cells to grow on glycerol. Five revertants of a deletion mutant that grow on glycerol were analysed. They were shown to carry mutations in the glycerol kinase gene. These are missense mutations located in parts of the gene that could encode regions important for the activity of glycerol kinase. The results strongly suggest that the main effect of the PTS on glycerol utilization in is mediated via glycerol kinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-5-1193
1995-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/5/mic-141-5-1193.html?itemId=/content/journal/micro/10.1099/13500872-141-5-1193&mimeType=html&fmt=ahah

References

  1. Amann E., Brosius J., Ptashne M. 1983; Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. . Gene 25:167–178
    [Google Scholar]
  2. Amster-Choder O., Wright A. 1993; Transcriptional regulation of the hgl operon of Escherichia coli involves phosphotransferase system-mediated phosphorylation of a transcriptional antiterminator.. J Cell Biochem 51:83–90
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen i. 1961; Requirements for transformation in Bacillus subtilis. . J Bacterial 81:741–746
    [Google Scholar]
  4. Arwert F., Venema G. 1973; Transformation in Bacillus subtilis. . Mol & Gen Genet 123:185–198
    [Google Scholar]
  5. Beijer L., Rutberg L. 1992; Utilisation of glycerol and glycerol- 3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis. . FEMS Microbiol Lett 100:217–220
    [Google Scholar]
  6. Beijer L., Nilsson R.-P., Holmberg C., Rutberg L. 1993; The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. . J Gen Microbiol 139:349–359
    [Google Scholar]
  7. Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F. Jr Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M. 1977; The protein data bank: a computer-based archival file for macromolecular structures.. J Mol Biol 112:535–542
    [Google Scholar]
  8. Deutscher J., Sauerwald H. 1986; Stimulation of dihydroxy- acetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalysed by Enzyme I and HPr of the phosphotransferase system.. J Bacterial 166:829–836
    [Google Scholar]
  9. Deutscher J., Reizer J., Fisher G, Saier M.H. Jr Steinmetz M. 1994; Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. . J Bacteriol 176:3336–3344
    [Google Scholar]
  10. Eisermann R., Deutscher J., Gonzy-Tréboul G., Hengstenberg W. 1988; Site-directed mutagenesis with the ptsH gene of Bacillus subtilis-. isolation and characterization of HPr proteins altered at the ATP-dependent regulatory phosphorylation site.. J Biol Chem 263:17050–17054
    [Google Scholar]
  11. Freedberg W.B., Lin E.C.C. 1973; Three kinds of control affecting the expression of the glp regulon in Escherichia coli. . J Bacteriol 115:816–823
    [Google Scholar]
  12. Gay P., Cordier P., Marquet M., Delobbe A. 1973; Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations.. Mol & Gen Genet 121:355–368
    [Google Scholar]
  13. Gonzy-Tréboul G., de Waard J.H., Zagorec M., Postma P.W. 1991; The glucose permease of the phosphotransferase system of Bacillus subtilis-. evidence for IIGlc and IIIGlc domains.. Mol Microbiol 5:1241–1249
    [Google Scholar]
  14. Haima P., Bron S., Venema G. 1987; The effect of restriction on shotgun cloning in Bacillus subtilis Marburg.. Mol & Gen Genet 209:335–342
    [Google Scholar]
  15. Holmberg C., Rutberg B. 1991; Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination.. Mol Microbiol 5:2891–2900
    [Google Scholar]
  16. Holmberg C., Rutberg L. 1992; An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription.. Mol Microbiol 6:2931–2938
    [Google Scholar]
  17. Holmberg G, Beijer L., Rutberg B., Rutberg L. 1990; Glycerol catabolism in Bacillus subtilis-. nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). . J Gen Microbiol 136:2367–2375
    [Google Scholar]
  18. Hurley J.H., Faber H.R., Worthylake D., Meadow N.D., Roseman S., Pettigrew D.W., Remington S.J. 1993; Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase.. Science 259:673–677
    [Google Scholar]
  19. Lin E.C.C., Koch J.P., Chused T.M., Jorgensen S.E. 1962; Utilization of L-α-glycerophosphate by Escherichia coli without hydrolysis.. Proc Natl Acad Sci USA 48:2145–2150
    [Google Scholar]
  20. Lindgren V. 1978; Mapping of a genetic locus that affects glycerol-3-phosphate transport in Bacillus subtilis. . J Bacteriol 133:667–670
    [Google Scholar]
  21. Lindgren V., Rutberg L. 1974; Glycerol metabolism in Bacillus subtilis-. gene-enzyme relationships.. J Bacteriol 119:431–442
    [Google Scholar]
  22. Mandel M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection.. J Mol Biol 53:159–162
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms.. J Mol Biol 3:208–218
    [Google Scholar]
  24. Niaudet B., Goze A., Ehrlich S.D. 1982; Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning.. Gene 19:277–284
    [Google Scholar]
  25. Nilsson R.-P., Beijer L, Rutberg B. 1994; The glpT and glpQ genes of the glycerol regulon in Bacillus subtilis. . Microbiology 140:723–730
    [Google Scholar]
  26. Novotny M.J., Frederickson W.L., Waygood E.B., Saier M.H. Jr 1985; Allosteric regulation of glycerol kinase by Enzyme IIIGlc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. . J Bacteriol 162:810–816
    [Google Scholar]
  27. Pettigrew D.W., Ma D.-P., Conrad C.A., Johnson J.R. 1988; Escherichia coli glycerol kinase.. J Biol Chem 263:135–139
    [Google Scholar]
  28. de Riel J.K., Paulus H. 1978; Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 1. Kinetic evidence.. Biochemistry 17:5134–5140
    [Google Scholar]
  29. Romano A.H., Saier M.H. Jr Harriott O.T., Reizer J. 1990; Physiological studies on regulation of glycerol utilization by the phbsphoenolpyruvate: sugar phosphotransferase system in Enterococcus faecalis. . J Bacteriol 172:6741–6748
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  31. Voegele R.T., Sweet G.D., Boos W. 1993; Glycerol kinase of Escherichia coli is activated by interaction with the glycerol uptake facilitator.. J Bacteriol 175:1087–1094
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-5-1193
Loading
/content/journal/micro/10.1099/13500872-141-5-1193
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error