1887

Abstract

Relatively limited information about promoter structures in has been available until now. With the aim of isolating and characterizing such transcription initiation signals, random 3A fragments of chromosomal DNA and of the corynebacterial phage øGA1 were cloned into the promoter probe vector pEKplCm and selected for promoter activity by chloramphenicol resistance of transformed cells. The nucleotide sequence of ten chromosomal and three phage fragments was determined and the transcriptional start (TS) sites were localized by primer extension analyses. Additionally, the promoters of five previously isolated genes were cloned and mapped. All of the isolated promoters were also functional in the heterologous host . A comparative analysis of the newly characterized promoter sequences together with published promoters from C. revealed conserved sequences centred about 35 bp (ttGcca) and 10 bp (TA.aaT) upstream of the TS site. The position of these motifs and the motifs themselves are comparable to the −35 and −10 promoter consensus sequences of other Gram-positive and Gram-negative bacteria, indicating that they represent transcription initiation signals in . However, the consensus hexamer of the −35 region is much less conserved than in and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-5-1297
1996-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/5/mic-142-5-1297.html?itemId=/content/journal/micro/10.1099/13500872-142-5-1297&mimeType=html&fmt=ahah

References

  1. Balows A.T., Uper H.G., Dworkin M., Harder W., Schleifer K.-H. The Prokaryotes 1991 New York: Springer-Verlag;
    [Google Scholar]
  2. Belyaeva T., Griffiths L., Minchin S., Cole J., Busby S. The Escherichia coli cysG promoter belongs to the ‘ extended -10’ class of bacterial promoters. Biochem J 1993; 296:851–857
    [Google Scholar]
  3. Birnboim H.C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enyymol 1983; 100:243–255
    [Google Scholar]
  4. Bttrmann E.R., Eikmanns B.J., Sahm H. Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 1992; 6:317–326
    [Google Scholar]
  5. Brabetz W., Liebl W., Schleifer K.-H. Studies on the utilization of lactose by Corynebacterium glutamicum bearing the lactose operon of Escherichia coli. Arch Microbiol 1991; 155:607–612
    [Google Scholar]
  6. Buttner M.J. RNA polymerase heterogeneity in Strepto-myces coelicolor A3(2). Mol Microbiol 1989; 3:1653–1659
    [Google Scholar]
  7. Cadenas R.S., Martin J.F., Gil J.A. Construction and characterization of promoter-probe vectors for Corynebacteria using the kanamycin-resistance reporter gene. Gene 1991; 98:117–121
    [Google Scholar]
  8. Close T.J., Rodriguez R.L. Construction and characterization of the chloramphenicol-resistance gene cartridge: a new approach to the transcriptional mapping of extrachromosomal elements. Gene 1982; 20:305–316
    [Google Scholar]
  9. Cremer J., Eggeling L., Sahm H. Cloning the dap A dapB cluster of the lysine-secreting bacterium Corymbacterium glutamicum. Mol Gen Genet 1990; 220:478–480
    [Google Scholar]
  10. Deuschle U., Kammerer W., Gentz R., Bujard H. Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J 1986; 5:2987–2994
    [Google Scholar]
  11. Eikmanns B.J., Kleinertz E., Liebl W., Sahm H. A family of Corynebacterium glutamicum-Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 1991; 102:93–98
    [Google Scholar]
  12. Eikmanns B.J., Thum-Schmitz N., Eggeling L.L., Udtke K.U., Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum git A gene encoding citrate synthase. Microbiology 1994; 140:1817–1828
    [Google Scholar]
  13. Follettie M.T., Peoples O., Agoropoulous C., Sinskey A.J. Gene structure and expression of the Corynebacterium flavum N13 askzasd operon. J Bacteriol 1993; 175:4096–4103
    [Google Scholar]
  14. Galas D.J., Eggert M., Waterman M.S. Rigorous pattern-recognition methods for DNA sequences. J Mol Biol 1985; 186:117–128
    [Google Scholar]
  15. Goldfarb D.S., Doi R.H., Rodriguez R.L. Expression of Tn9-derived chloramphenicol resistance in Bacillus subtilis. Nature 1981; 293:309–311
    [Google Scholar]
  16. Gornall A.G., Bardawill C.J., David M.M. Determination of serum proteins by means of the biuret reaction. J Biol Chem 1949; 177:751–766
    [Google Scholar]
  17. Graves M.C., Rabinowitz J.C. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. J Biol Chem 1986; 261:11409–11415
    [Google Scholar]
  18. Gross C.A., Lonetto M., Losick R. Bacterial sigma factors. In Transcriptional Regulation 1992 Edited by McKnight S., Yamamoto K. Cold Spring Harbour, NY: Cold Spring Harbor Laboratory; 1 pp 129–176
    [Google Scholar]
  19. Haldenwang W.G. The sigma factors of Bacillus subtilis. Microbiol Rev 1995; 59:1–30
    [Google Scholar]
  20. Han K.-S., Archer J.A.C., Sinskey A.J. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol Microbiol 1990; 4:1693–1702
    [Google Scholar]
  21. Hanahan D. Techniques for transformation of E. coli In DNA Cloning. A Practical Approach 1985 Edited by Glover D.M. Oxford: IRL Press; 1 pp 109–135
    [Google Scholar]
  22. Harley C.B., Reynolds R.P. Analysis of E coli promoter sequences. Nucleic Acids Res 1987; 15:2343–2361
    [Google Scholar]
  23. Hawley D.K., McClure W.R. Compilation and analysis of Escherichia coli promoter sequences. Nucleic Acids Res 1983; 11:2237–3355
    [Google Scholar]
  24. Heery D.M., Dunican L.K. Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence. Appl Environ Microbiol 1993; 59:791–799
    [Google Scholar]
  25. Helmann J.D. Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 1991; 5:2875–2882
    [Google Scholar]
  26. Helmann J.D. Compilation and analysis of Bacillus subtilis aA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 1995; 23:2351–2360
    [Google Scholar]
  27. Jetten M.S.M., Sinskey A.J. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 1995; 15:73–103
    [Google Scholar]
  28. Keilhauer C., Eggeling L., Sahm H. Isoleucine synthesis in Corymbacterium glutamicum: molecular analysis of the ilvB-ilvN ilvC operon. J Bacteriol 1993; 175:5595–5603
    [Google Scholar]
  29. Liebl W. The genus Corynebacterium - nonmedical. In The Prokaryotes 1991 Edited by Balows A., Trüper H.G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag; 2 pp 1157–1171
    [Google Scholar]
  30. Liebl W., Bayerl A., Schein B., Stillner U., Schleifer K.-H. High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 1989; 65:299–304
    [Google Scholar]
  31. Lisser S., Margalit H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Rit 1993; 21:1507–1516
    [Google Scholar]
  32. Lonetto M., Gribskov M., Gross C.A. The a70 family: sequence conservation and evolutionary relationships. J Bacteriol 1992; 174:3843–3849
    [Google Scholar]
  33. Marcel T., Archer J.A.C., Mengin-Lecreulx D., Sinskey A.J. Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene. Mol Microbiol 1990; 4:1819–1830
    [Google Scholar]
  34. Matern H.T., Klein J.R., Henrich B., Plapp R. Determination and comparison of Lactobacillus delbrueckii subsp lactis DSM7290 promoter sequences. FEMS Microbiol Lett 1994; 122:121–128
    [Google Scholar]
  35. Merrick M.J. In a class of its own - the RNA polymerase sigma factor er54 (ctn). Mol Microbiol 1993; 10:903–909
    [Google Scholar]
  36. Möckel B., Eggeling L., Sahm H. Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol 1992; 174:8065–8072
    [Google Scholar]
  37. Moran C.P. Jr, Lang N., Le Grice S.F.J., Lee G., Stephens M., Sonenshein A.L., Pero J., Losick R. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 1982; 186:339–346
    [Google Scholar]
  38. Morinaga Y., Tsuchiya M., Miwa K., Sano K. Expression of Escherichia coli promoters in Brevibacterium lacto-fermentum using the shuttle vector pEB003. J Biotechnol 1987; 5:305–312
    [Google Scholar]
  39. Morrison D.A., Jaurin B. Streptococcus pneumoniae possesses canonical Escherichia coli (sigma 70) promoters. Mol 1990; Microbiol4:1143–1152
    [Google Scholar]
  40. Von Der Osten C.H., Barbas C.F., Wong C.H., Sinskey A.J. Molecular cloning, nucleotide sequence and structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C glutamicum fructose-1, 6-biphosphate aldolase to class I and class II aldolases. Mol Microbiol 1989; 3:1625–1637
    [Google Scholar]
  41. Ozaki A., Katsumata R., Oka T., Furuya A. Functional expression of the genes of Escherichia coli in Gram-positive Corynebacterium glutamicum. Mol Gen Genet 1984; 196:175–178
    [Google Scholar]
  42. Pätek M., Krumbach K., Eggeling L., Sahm H. Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leu A inactivation on lysine synthesis. Appl Environ Microbiol 1994; 60:133–140
    [Google Scholar]
  43. Pätek M., Navrätil O., Hochmannovä J., Nesvera J., Hubäcek J. Expression of the threonine operon from Escherichia coli in Brevibacterium flavum and Corynebacterium glutamicum. Biotechnol Lett 1989; 11:231–236
    [Google Scholar]
  44. Peoples O.P., Liebl W., Bodis M., Maeng P.J., Follettie M., T.; Archer J.A., Sinskey A.J. Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom~thrB operon. Mol Microbiol 1988; 2:63–72
    [Google Scholar]
  45. Perez-Martin J., Rojo F., De Lorenzo V. Promoters responsive to DNA bending: a common theme in procaryotic gene expression. Microbiol Rev 1994; 58:268–290
    [Google Scholar]
  46. Pouwels P.H., Leer R.J. Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek 1993; 64:85–107
    [Google Scholar]
  47. Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet 1984; 18:173–206
    [Google Scholar]
  48. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 1979; 13:319–353
    [Google Scholar]
  49. Ross W., Gosink K.K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R.L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 1993; 262:1407–1413
    [Google Scholar]
  50. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning, a Laboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Schwinde J.W., Thum-Schmitz N., Eikmanns B.J., Sahm H. Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum. J Bacteriol 1993; 175:3905–3908
    [Google Scholar]
  52. Shaw W.V. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enyymol 1975; 43:737–755
    [Google Scholar]
  53. Sonnen H., Schneider J., Kutzner H.J. Characterization of GAl, an inducible phage particle from Brevibacterium flavum. J Gen Microbiol 1990; 136:567–571
    [Google Scholar]
  54. Strohl W.R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 1992; 20:961–974
    [Google Scholar]
  55. Van Der Vossen J.M., Van Der Lelie D., Venema R. Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 1987; 53:2452–2457
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-5-1297
Loading
/content/journal/micro/10.1099/13500872-142-5-1297
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error