1887

Abstract

This study aimed to determine whether allelic variants of the FimH adhesin from confer differential bacterial binding to different types of mammalian cells [murine bone marrow-derived dendritic cells (DCs) and HEp-2 cells] and chicken leukocytes. Although the type 1 fimbriated serovar Typhimurium strains AJB3 (SR-11 derivative) and SL1344 both aggregated yeast cells, only the former bound efficiently to DCs and HEp-2 cells. Type 1 fimbriae-mediated binding to DCs having previously been shown to require the FimH adhesin and to be inhibited by mannose, FimH sequences from strains SL1344 and AJB3 were compared and found to differ by only one residue, asparagine 158 in SL1344 being replaced by a tyrosine in AJB3. The importance of residue 158 for FimH-mediated binding was further confirmed in recombinant expressing type 1 fimbriae with a variety of substitutions engineered at this position. Additional studies with the ‘non-adhesive’ FimH of a type 2 fimbriated serovar Gallinarum showed that this FimH did not mediate bacterial binding to murine DCs or HEp-2 cells. However, the type 2 FimH significantly improved bacterial adhesion to chicken leukocytes, in comparison to the type 1 FimH of strain AJB3, attributing for the first time a function to the type 2 fimbriae of . Consequently, our data show that allelic variation of the FimH adhesin directs not only host-cell-specific recognition, but also distinctive binding to mammalian or avian receptors. It is most relevant that this allele-specific binding profile parallels the host specificity of the respective FimH-expressing pathogen.

Keyword(s): DC, dendritic cell
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026286-0
2009-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1623.html?itemId=/content/journal/micro/10.1099/mic.0.026286-0&mimeType=html&fmt=ahah

References

  1. Althouse C., Patterson S., Fedorka-Cray P., Isaacson R. E. 2003; Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun 71:6446–6452
    [Google Scholar]
  2. Bäumler A. J., Tsolis R. M., Bowe F. A., Kusters J. G., Hoffmann S., Heffron F. 1996a; The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64:61–68
    [Google Scholar]
  3. Bäumler A. J., Tsolis R. M., Heffron F. 1996b; The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer's patches. Proc Natl Acad Sci U S A 93:279–283
    [Google Scholar]
  4. Bäumler A. J., Tsolis R. M., Heffron F. 1996c; Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium . Infect Immun 64:1862–1865
    [Google Scholar]
  5. Blomfield I. C., McClain M. S., Eisenstein B. I. 1991; Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol Microbiol 5:1439–1445
    [Google Scholar]
  6. Boddicker J. D., Ledeboer N. A., Jagnow J., Jones B. D., Clegg S. 2002; Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 45:1255–1265
    [Google Scholar]
  7. Bullas L. R., Ryu J. I. 1983; Salmonella typhimurium LT2 strains which are r− m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156:471–474
    [Google Scholar]
  8. Crichton P. B., Yakubu D. E., Old D. C., Clegg S. 1989; Immunological and genetical relatedness of type-1 and type-2 fimbriae in salmonellas of serotypes Gallinarum, Pullorum and Typhimurium. . J Appl Bacteriol 67:283–291
    [Google Scholar]
  9. Dodd D. C., Eisenstein B. I. 1982; Antigenic quantitation of type 1 fimbriae on the surface of Escherichia coli cells by an enzyme-linked immunosorbent inhibition assay. Infect Immun 38:764–773
    [Google Scholar]
  10. Duguid J. P., Anderson E. S. 1967; Terminology of bacterial fimbriae, or pili, and their types. Nature 215:89–90
    [Google Scholar]
  11. Duguid J. P., Anderson E. S., Campbell I. 1966; Fimbriae and adhesive properties of Salmonella . J Pathol Bacteriol 92:107–137
    [Google Scholar]
  12. Duguid J. P., Darekar M. R., Wheater D. W. 1976; Fimbriae and infectivity in Salmonella typhimurium . J Med Microbiol 9:459–473
    [Google Scholar]
  13. Duncan M. J., Mann E. L., Cohen M. S., Ofek I., Sharon N., Abraham S. N. 2005; The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280:37707–37716
    [Google Scholar]
  14. Ernst R. K., Dombroski D. M., Merrick J. M. 1990; Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium . Infect Immun 58:2014–2016
    [Google Scholar]
  15. Ewen S. W., Naughton P. J., Grant G., Sojka M., Allen-Vercoe E., Bardocz S., Thorns C. J., Pusztai A. 1997; Salmonella enterica var Typhimurium and Salmonella enterica var Enteritidis express type 1 fimbriae in the rat in vivo. FEMS Immunol Med Microbiol 18:185–192
    [Google Scholar]
  16. Giannella R. A. 1979; Importance of the intestinal inflammatory reaction in salmonella-mediated intestinal secretion. Infect Immun 23:140–145
    [Google Scholar]
  17. Guo A., Lasaro M. A., Sirard J.-C., Kraehenbühl J.-P., Schifferli D. M. 2007; Adhesin-dependent binding and uptake of Salmonella enterica serovar Typhimurium by dendritic cells. Microbiology 153:1059–1069
    [Google Scholar]
  18. Hancox L. S., Yeh K. S., Clegg S. 1997; Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium . FEMS Immunol Med Microbiol 19:289–296
    [Google Scholar]
  19. Harris S. L., Spears P. A., Havell E. A., Hamrick T. S., Horton J. R., Orndorff P. E. 2001; Characterization of Escherichia coli type 1 pilus mutants with altered binding specificities. J Bacteriol 183:4099–4102
    [Google Scholar]
  20. Hoiseth S. K., Stocker B. D. 1981; Aromatic-dependent Salmonella typhimurium are nonvirulent and effective as live vaccines. Nature 291:238–239
    [Google Scholar]
  21. Hopkins S. A., Niedergang F., Corthesy-Theulaz I. E., Kraehenbuhl J.-P. 2000; A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell Microbiol 2:59–68
    [Google Scholar]
  22. Hultgren S. J., Normark S., Abraham S. N. 1991; Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45:383–415
    [Google Scholar]
  23. Jones B. D., Ghori N., Falkow S. 1994; Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180:15–23
    [Google Scholar]
  24. Kelsall B. L., Rescigno M. 2004; Mucosal dendritic cells in immunity and inflammation. Nat Immunol 5:1091–1095
    [Google Scholar]
  25. Kisiela D., Sapeta A., Kuczkowski M., Stefaniak T., Wieliczko A., Ugorski M. 2005; Characterization of FimH adhesins expressed by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum: reconstitution of mannose-binding properties by single amino acid substitution. Infect Immun 73:6187–6190
    [Google Scholar]
  26. Kisiela D., Laskowska A., Sapeta A., Kuczkowski M., Wieliczko A., Ugorski M. 2006; Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. Microbiology 152:1337–1346
    [Google Scholar]
  27. Lutz M. B., Kukutsch N., Ogilvie A. L., Rossner S., Koch F., Romani N., Schuler G. 1999; An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92
    [Google Scholar]
  28. Madison B., Ofek I., Clegg S., Abraham S. N. 1994; Type 1 fimbrial shafts of Escherichia coli and Klebsiella pneumoniae influence sugar-binding specificities of their FimH adhesins. Infect Immun 62:843–848
    [Google Scholar]
  29. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210
    [Google Scholar]
  30. Monno R. A., Manodoro V., Di Carlantonio M. E., Ianieri A., Di Modugno G., Jirillo E. 1986; Relationship between immune system and gram-negative bacteria, binding of Salmonella pullorum-gallinarum to chicken lymphocytes. Eur J Epidemiol 2:294–299
    [Google Scholar]
  31. Niedergang F., Sirard J. C., Blanc C. T., Kraehenbuhl J. P. 2000; Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc Natl Acad Sci U S A 97:14650–14655
    [Google Scholar]
  32. Ohman L., Magnusson K. E., Stendahl O. 1985; Mannose-specific and hydrophobic interaction between Escherichia coli and polymorphonuclear leukocytes – influence of bacterial culture period. Acta Pathol Microbiol Immunol Scand [B] 93:125–131
    [Google Scholar]
  33. Pouttu R., Puustinen T., Virkola R., Hacker J., Klemm P., Korhonen T. K. 1999; Amino acid residue Ala-62 in the FimH fimbrial adhesin is critical for the adhesiveness of meningitis-associated Escherichia coli to collagens. Mol Microbiol 31:1747–1757
    [Google Scholar]
  34. Rankin J. D., Taylor R. J. 1966; The estimation of doses of Salmonella typhimurium suitable for the experimental production of disease in calves. Vet Rec 78:706–707
    [Google Scholar]
  35. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-Castagnoli P. 2001; Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367
    [Google Scholar]
  36. Schembri M. A., Sokurenko E. V., Klemm P. 2000; Functional flexibility of the FimH adhesin: insights from a random mutant library. Infect Immun 68:2638–2646
    [Google Scholar]
  37. Schneider H. A., Zinder N. D. 1956; Nutrition of the host and natural resistance to infection. V. An improved assay employing genetic markers in the double strain inoculation test. J Exp Med 103:207–223
    [Google Scholar]
  38. Sokurenko E. V., Courtney H. S., Abraham S. N., Klemm P., Hasty D. L. 1992; Functional heterogeneity of type 1 fimbriae of Escherichia coli . Infect Immun 60:4709–4719
    [Google Scholar]
  39. Sokurenko E. V., Courtney H. S., Ohman D. E., Klemm P., Hasty D. L. 1994; FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J Bacteriol 176:748–755
    [Google Scholar]
  40. Sokurenko E. V., Courtney H. S., Maslow J., Siitonen A., Hasty D. L. 1995; Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J Bacteriol 177:3680–3686
    [Google Scholar]
  41. Sokurenko E. V., Chesnokova V., Doyle R. J., Hasty D. L. 1997; Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J Biol Chem 272:17880–17886
    [Google Scholar]
  42. Sokurenko E. V., Chesnokova V., Dykhuizen D. E., Ofek I., Wu X. R., Krogfelt K. A., Struve C., Schembri M. A., Hasty D. L. 1998; Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95:8922–8926
    [Google Scholar]
  43. Tavendale A., Jardine C. K., Old D. C., Duguid J. P. 1983; Haemagglutinins and adhesion of Salmonella typhimurium to HEp2 and HeLa cells. J Med Microbiol 16:371–380
    [Google Scholar]
  44. Thankavel K., Shah A. H., Cohen M. S., Ikeda T., Lorenz R. G., Curtiss R. III, Abraham S. N. 1999; Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem 274:5797–5809
    [Google Scholar]
  45. van der Velden A. W., Baumler A. J., Tsolis R. M., Heffron F. 1998; Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66:2803–2808
    [Google Scholar]
  46. van Vliet S. J., Garcia-Vallejo J. J., van Kooyk Y. 2008; Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol Cell Biol 86:580–587
    [Google Scholar]
  47. Weissman S. J., Moseley S. L., Dykhuizen D. E., Sokurenko E. V. 2003; Enterobacterial adhesins and the case for studying SNPs in bacteria. Trends Microbiol 11:115–117
    [Google Scholar]
  48. Wick M. J. 2003; The role of dendritic cells in the immune response to Salmonella . Immunol Lett 85:99–102
    [Google Scholar]
  49. Williams L. P. 1980; Salmonellosis. In CRC Handbook Series in Zoonoses pp 11–34 Edited by Steele J. H. Boca Raton, FL: CRC Press;
    [Google Scholar]
  50. Wilson R. L., Elthon J., Clegg S., Jones B. D. 2000; Salmonella enterica serovars Gallinarum and Pullorum expressing Salmonella enterica serovar Typhimurium type 1 fimbriae exhibit increased invasiveness for mammalian cells. Infect Immun 68:4782–4785
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026286-0
Loading
/content/journal/micro/10.1099/mic.0.026286-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error