1887

Abstract

is a major pathogen implicated in dental caries. Its virulence is enhanced by its ability to produce bacteriocins, called mutacins, which inhibit the growth of other Gram-positive bacteria. The goal of this study is to use a random insertional mutagenesis approach to search for genes that are associated with mutacin I production in the virulent strain UA140. A random insertional mutagenesis library consisting of 11 000 clones was constructed and screened for a mutacin-defective phenotype. Mutacin-defective clones were isolated, and their insertion sites were determined by PCR amplification or plasmid rescue followed by sequencing. A total of twenty-five unique genes were identified. These genes can be categorized into the following functional classes: two-component sensory systems, stress responses, energy metabolism and central cellular processes. Several conserved hypothetical proteins with unknown functions were also identified. These results suggest that mutacin I production is stringently controlled by diverse and complex regulatory pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28221-0
2005-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3947.html?itemId=/content/journal/micro/10.1099/mic.0.28221-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Chen Y.-Y. M., Burne R. A. 2003; Characterization of Streptococcus mutans strains deficient in EIIABMan of the sugar phosphotransferase system. Appl Environ Microbiol 69:4760–4769 [CrossRef]
    [Google Scholar]
  2. Ajdić D., McShan W. M., McLaughlin R. E. 16 other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  3. Anderson D. M., Schneewind O. 1997; A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica . Science 278:1140–1143 [CrossRef]
    [Google Scholar]
  4. Carlsson J., Griffith C. J. 1974; Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol 19:1105–1109 [CrossRef]
    [Google Scholar]
  5. Carlsson J., Kujala U., Edlund M. B. 1985; Pyruvate dehydrogenase activity in Streptococcus mutans . Infect Immun 49:674–678
    [Google Scholar]
  6. Christensen S. K., Mikkelsen M., Pedersen K., Gerdes K. 2001; RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A 98:14328–14333 [CrossRef]
    [Google Scholar]
  7. Dalet K., Cenatiempo Y., Cossart P., Héchard Y. 2001; A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269
    [Google Scholar]
  8. de Los Santos P. E., Parret A. H., De Mot R. 2005; Stress-related Pseudomonas genes involved in production of bacteriocin LlpA. FEMS Microbiol Lett 244:243–250 [CrossRef]
    [Google Scholar]
  9. Engelke G., Gutowski-Eckel Z., Kiesau P., Siegers K., Hammelmann M., Entian K. D. 1994; Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60:814–825
    [Google Scholar]
  10. Federle M. J., McIver K. S., Scott J. R. 1999; A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol 181:3649–3657
    [Google Scholar]
  11. Galvani C., Terry J., Ishiguro E. E. 2001; Purification of the RelB and RelE proteins of Escherichia coli : RelE binds to RelB and to ribosomes. J Bacteriol 183:2700–2703 [CrossRef]
    [Google Scholar]
  12. Gauthier L., Mayrand D., Vadeboncoeur C. 1984; Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans . J Bacteriol 160:755–763
    [Google Scholar]
  13. Giammarinaro P., Sicard M., Gasc A. M. 1999; Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae . Microbiology 145:1859–1869 [CrossRef]
    [Google Scholar]
  14. Graham M. R., Smoot L. M., Migliaccio C. A. L. 7 other authors 2002; Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99:13855–13860 [CrossRef]
    [Google Scholar]
  15. Gronroos L., Saarela M., Matto J., Tanner-Salo U., Vuorela A., Alaluusua S. 1998; Mutacin production by Streptococcus mutans may promote transmission of bacteria from mother to child. Infect Immun 66:2595–2600
    [Google Scholar]
  16. Guder A., Wiedemann I., Sahl H. G. 2000; Posttranslationally modified bacteriocins – the lantibiotics. Biopolymers 55:62–73 [CrossRef]
    [Google Scholar]
  17. Héchard Y., Pelletier C., Cenatiempo Y., Frère J. 2001; Analysis of σ 54-dependent genes in Enterococcus faecalis : a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580
    [Google Scholar]
  18. Henkin T. M. 2000; Transcription termination control in bacteria. Curr Opin Microbiol 3:149–153 [CrossRef]
    [Google Scholar]
  19. Hillman J. D. 2002; Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie van Leeuwenhoek 82:361–366 [CrossRef]
    [Google Scholar]
  20. Jayaraman G. C., Penders J. E., Burne R. A. 1997; Transcriptional analysis of the Streptococcus mutans hrcA , grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol 25:329–341 [CrossRef]
    [Google Scholar]
  21. Johansson J., Cossart P. 2003; RNA-mediated control of virulence gene expression in bacterial pathogens. Trends Microbiol 11:280–285 [CrossRef]
    [Google Scholar]
  22. Klein C., Kaletta C., Entian K. D. 1993; Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 59:296–303
    [Google Scholar]
  23. Kuhnert W. L., Zheng G., Faustoferri R. C., Quivey R. G. Jr 2004; The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol 186:8524–8528 [CrossRef]
    [Google Scholar]
  24. Lee M. S., Seok C., Morrison D. A. 1998; Insertion-duplication mutagenesis in Streptococcus pneumoniae : targeting fragment length is a critical parameter in use as a random insertion tool. Appl Environ Microbiol 64:4796–4802
    [Google Scholar]
  25. Lee M. S., Dougherty B. A., Madeo A. C., Morrison D. A. 1999; Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae : use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl Environ Microbiol 65:1883–1890
    [Google Scholar]
  26. Lee S. F., Delaney G. D., Elkhateeb M. 2004; A two-component covRS regulatory system regulates expression of fructosyltransferase and a novel extracellular carbohydrate in Streptococcus mutans . Infect Immun 72:3968–3973 [CrossRef]
    [Google Scholar]
  27. Lemos J. A., Chen Y. Y., Burne R. A. 2001; Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans . J Bacteriol 183:6074–6084 [CrossRef]
    [Google Scholar]
  28. Len A. C., Harty D. W., Jacques N. A. 2004; Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366 [CrossRef]
    [Google Scholar]
  29. Levin J. C., Wessels M. R. 1998; Identification of csrR/csrS , a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol Microbiol 30:209–219 [CrossRef]
    [Google Scholar]
  30. Li Y. H., Lau P. C., Tang N., Svensater G., Ellen R. P., Cvitkovitch D. G. 2002; Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans . J Bacteriol 184:6333–6342 [CrossRef]
    [Google Scholar]
  31. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  32. Lun S., Willson P. J. 2005; Putative mannose-specific phosphotransferase system component IID represses expression of suilysin in serotype 2 Streptococcus suis . Vet Microbiol 105:169–180 [CrossRef]
    [Google Scholar]
  33. Ma W., Cui Y., Liu Y., Dumenyo C. K., Mukherjee A., Chatterjee A. K. 2001; Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. J Bacteriol 183:1870–1880 [CrossRef]
    [Google Scholar]
  34. Merritt J., Qi F., Goodman S. D., Anderson M. H., Shi W. 2003; Mutation of luxS affects biofilm formation in Streptococcus mutans . Infect Immun 71:1972–1979 [CrossRef]
    [Google Scholar]
  35. Merritt J., Kreth J., Shi W., Qi F. 2005; LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 57:960–969 [CrossRef]
    [Google Scholar]
  36. Novak J., Caufield P. W., Miller E. J. 1994; Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans . J Bacteriol 176:4316–4320
    [Google Scholar]
  37. Novick R. P., Ross H. F., Projan S. J., Kornblum J., Kreiswirth B., Moghazeh S. 1993; Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975
    [Google Scholar]
  38. Pedersen K., Christensen S. K., Gerdes K. 2002; Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45:501–510 [CrossRef]
    [Google Scholar]
  39. Perry D., Wondrack L. M., Kuramitsu H. K. 1983; Genetic transformation of putative cariogenic properties in Streptococcus mutans . Infect Immun 41:722–727
    [Google Scholar]
  40. Podbielski A., Spellerberg B., Woischnik M., Pohl B., Lutticken R. 1996; Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS. Gene 177:137–147 [CrossRef]
    [Google Scholar]
  41. Presser K. A., Ratkowsky D. A., Ross T. 1997; Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360
    [Google Scholar]
  42. Qi F., Chen P., Caufield P. W. 1999; Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887
    [Google Scholar]
  43. Qi F., Chen P., Caufield P. W. 2000; Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans , CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229 [CrossRef]
    [Google Scholar]
  44. Qi F., Chen P., Caufield P. W. 2001; The group I strain of Streptococcus mutans , UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21 [CrossRef]
    [Google Scholar]
  45. Qi F., Merritt J., Lux R., Shi W. 2004; Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72:4895–4899 [CrossRef]
    [Google Scholar]
  46. Ramnath M., Beukes M., Tamura K., Hastings J. W. 2000; Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes , as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101 [CrossRef]
    [Google Scholar]
  47. Riley M. A., Wertz J. E. 2002; Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137 [CrossRef]
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Schachtele C. F. 1975; Glucose transport in Streptococcus mutans : preparation of cytoplasmic membranes and characteristics of phosphotransferase activity. J Dent Res 54:330–338
    [Google Scholar]
  50. Schauder S., Shokat K., Surette M. G., Bassler B. L. 2001; The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476 [CrossRef]
    [Google Scholar]
  51. Schulz A., Schumann W. 1996; hrcA , the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 178:1088–1093
    [Google Scholar]
  52. Shimizu T., Yaguchi H., Ohtani K., Banu S., Hayashi H. 2002; Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43:257–265 [CrossRef]
    [Google Scholar]
  53. Suzuki T., Tagami J., Hanada N. 2000; Role of F1F0-ATPase in the growth of Streptococcus mutans GS5. J Appl Microbiol 88:555–562 [CrossRef]
    [Google Scholar]
  54. Vadeboncoeur C., Pelletier M. 1997; The phosphoenolpyruvate : sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19:187–207 [CrossRef]
    [Google Scholar]
  55. van de Guchte M., Serror P., Chervaux C., Smokvina T., Ehrlich S. D., Maguin E. 2002; Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82:187–216 [CrossRef]
    [Google Scholar]
  56. Weaver C. A., Chen Y. Y., Burne R. A. 2000; Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius : effects on growth and urease expression. Microbiology 146:1179–1185
    [Google Scholar]
  57. Xavier K. B., Bassler B. L. 2003; LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197 [CrossRef]
    [Google Scholar]
  58. Yamada T., Carlsson J. 1975; Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J Bacteriol 124:55–61
    [Google Scholar]
  59. Yamashita Y., Tsukioka Y., Tomihisa K., Nakano Y., Koga T. 1998; Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans . J Bacteriol 180:5803–5807
    [Google Scholar]
  60. Yoshida A., Kuramitsu H. K. 2002; Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68:6283–6291 [CrossRef]
    [Google Scholar]
  61. Zähner D., Kaminski K., van der Linden M., Mascher T., Meral M., Hakenbeck R. 2002; The ciaR/ciaH regulatory network of Streptococcus pneumoniae . J Mol Microbiol Biotechnol 4:211–216
    [Google Scholar]
  62. Zuber U., Schumann W. 1994; CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis . J Bacteriol 176:1359–1363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28221-0
Loading
/content/journal/micro/10.1099/mic.0.28221-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error